Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experimentation Platforms Meet Reinforcement Learning: Bayesian Sequential Decision-Making for Continuous Monitoring (2304.00420v1)

Published 2 Apr 2023 in cs.LG

Abstract: With the growing needs of online A/B testing to support the innovation in industry, the opportunity cost of running an experiment becomes non-negligible. Therefore, there is an increasing demand for an efficient continuous monitoring service that allows early stopping when appropriate. Classic statistical methods focus on hypothesis testing and are mostly developed for traditional high-stake problems such as clinical trials, while experiments at online service companies typically have very different features and focuses. Motivated by the real needs, in this paper, we introduce a novel framework that we developed in Amazon to maximize customer experience and control opportunity cost. We formulate the problem as a Bayesian optimal sequential decision making problem that has a unified utility function. We discuss extensively practical design choices and considerations. We further introduce how to solve the optimal decision rule via Reinforcement Learning and scale the solution. We show the effectiveness of this novel approach compared with existing methods via a large-scale meta-analysis on experiments in Amazon.

Citations (3)

Summary

We haven't generated a summary for this paper yet.