Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robotic Perception of Transparent Objects: A Review (2304.00157v2)

Published 31 Mar 2023 in cs.RO

Abstract: Transparent object perception is a rapidly developing research problem in artificial intelligence. The ability to perceive transparent objects enables robots to achieve higher levels of autonomy, unlocking new applications in various industries such as healthcare, services and manufacturing. Despite numerous datasets and perception methods being proposed in recent years, there is still a lack of in-depth understanding of these methods and the challenges in this field. To address this gap, this article provides a comprehensive survey of the platforms and recent advances for robotic perception of transparent objects. We highlight the main challenges and propose future directions of various transparent object perception tasks, i.e., segmentation, reconstruction, and pose estimation. We also discuss the limitations of existing datasets in diversity and complexity, and the benefits of employing multi-modal sensors, such as RGB-D cameras, thermal cameras, and polarised imaging, for transparent object perception. Furthermore, we identify perception challenges in complex and dynamic environments, as well as for objects with changeable geometries. Finally, we provide an interactive online platform to navigate each reference: \url{https://sites.google.com/view/transperception}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (138)
  1. J. Chang, M. Kim, S. Kang, H. Han, S. Hong, K. Jang, and S. Kang, “Ghostpose*: Multi-view pose estimation of transparent objects for robot hand grasping,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 5749–5755.
  2. E. Xie, W. Wang, W. Wang, M. Ding, C. Shen, and P. Luo, “Segmenting transparent objects in the wild,” in Proc. Eur. Conf. Comput. Vis, 2020, pp. 696–711.
  3. H. Mei, X. Yang, Y. Wang, Y. Liu, S. He, Q. Zhang, X. Wei, and R. W. Lau, “Don’t hit me! glass detection in real-world scenes,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., June 2020, pp. 3687–3696.
  4. H. Mei, B. Dong, W. Dong, J. Yang, S.-H. Baek, F. Heide, P. Peers, X. Wei, and X. Yang, “Glass segmentation using intensity and spectral polarization cues,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 12 622–12 631.
  5. I. Lysenkov and V. Rabaud, “Pose estimation of rigid transparent objects in transparent clutter,” in Proc. IEEE Int. Conf. Robot. Autom., 2013, pp. 162–169.
  6. X. Chen, H. Zhang, Z. Yu, A. Opipari, and O. Chadwicke Jenkins, “Clearpose: Large-scale transparent object dataset and benchmark,” in Proc. Eur. Conf. Comput. Vis, 2022, pp. 381–396.
  7. S. Sajjan, M. Moore, M. Pan, G. Nagaraja, J. Lee, A. Zeng, and S. Song, “Clear grasp: 3d shape estimation of transparent objects for manipulation,” in Proc. IEEE Int. Conf. Robot. Autom., 2020, pp. 3634–3642.
  8. H. Xu, Y. R. Wang, S. Eppel, A. Aspuru-Guzik, F. Shkurti, and A. Garg, “Seeing glass: Joint point-cloud and depth completion for transparent objects,” in Proc. Conf. Robot Learn., 2021, pp. 827–838.
  9. J. Jiang, G. Cao, T.-T. Do, and S. Luo, “A4t: Hierarchical affordance detection for transparent objects depth reconstruction and manipulation,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 9826–9833, 2022.
  10. J. Ichnowski, Y. Avigal, J. Kerr, and K. Goldberg, “Dex-nerf: Using a neural radiance field to grasp transparent objects,” in Proc. Conf. Robot Learn., 2021, pp. 526–536.
  11. J. Kerr, L. Fu, H. Huang, J. Ichnowski, M. Tancik, Y. Avigal, A. Kanazawa, and K. Goldberg, “Evo-nerf: Evolving nerf for sequential robot grasping,” in Proc. Conf. Robot Learn., 2022, pp. 353–367.
  12. Q. Dai, Y. Zhu, Y. Geng, C. Ruan, J. Zhang, and H. Wang, “Graspnerf: Multiview-based 6-dof grasp detection for transparent and specular objects using generalizable nerf,” Proc. IEEE Int. Conf. Robot. Autom., pp. 1757–1763, 2023.
  13. I. Ihrke, K. N. Kutulakos, H. P. Lensch, M. Magnor, and W. Heidrich, “Transparent and specular object reconstruction,” in Comput. Graph. Forum., vol. 29, no. 8, 2010, pp. 2400–2426.
  14. X. Liu, R. Jonschkowski, A. Angelova, and K. Konolige, “Keypose: Multi-view 3d labeling and keypoint estimation for transparent objects,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 11 602–11 610.
  15. Z. Zhou, X. Chen, and O. C. Jenkins, “Lit: Light-field inference of transparency for refractive object localization,” IEEE Robot. Autom. Lett., vol. 5, no. 3, pp. 4548–4555, 2020.
  16. D. Huo, J. Wang, Y. Qian, and Y.-H. Yang, “Glass segmentation with rgb-thermal image pairs,” IEEE Trans. Image Process., vol. 32, pp. 1911–1926, 2023.
  17. J. Jiang, G. Cao, A. Butterworth, T.-T. Do, and S. Luo, “Where shall i touch? vision-guided tactile poking for transparent object grasping,” IEEE/ASME Trans. Mechatron., vol. 28, no. 1, pp. 233–244, 2022.
  18. S. Eppel, H. Xu, Y. R. Wang, and A. Aspuru-Guzik, “Predicting 3d shapes, masks, and properties of materials inside transparent containers, using the transproteus cgi dataset,” Digital Discovery, vol. 1, no. 1, pp. 45–60, 2022.
  19. K. Maeno, H. Nagahara, A. Shimada, and R.-i. Taniguchi, “Light field distortion feature for transparent object recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2013, pp. 2786–2793.
  20. Y. Xu, H. Nagahara, A. Shimada, and R.-i. Taniguchi, “Transcut2: Transparent object segmentation from a light-field image,” IEEE Trans. Comput. Imaging, vol. 5, no. 3, pp. 465–477, 2019.
  21. A. Kalra, V. Taamazyan, S. K. Rao, K. Venkataraman, R. Raskar, and A. Kadambi, “Deep polarization cues for transparent object segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 8602–8611.
  22. G. Chen, K. Han, and K.-Y. K. Wong, “Tom-net: Learning transparent object matting from a single image,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 9233–9241.
  23. S. Luo, J. Bimbo, R. Dahiya, and H. Liu, “Robotic tactile perception of object properties: A review,” Mechatronics, vol. 48, pp. 54–67, 2017.
  24. S. Zhang, J. Shan, F. Sun, B. Fang, and Y. Yang, “Multimode fusion perception for transparent glass recognition,” Industrial Robot: the international journal of robotics research and application, vol. 49, no. 4, pp. 625–633, 2022.
  25. W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot tactile sensors for estimating geometry and force,” Sensors, vol. 17, no. 12, p. 2762, 2017.
  26. N. Wettels, V. J. Santos, R. S. Johansson, and G. E. Loeb, “Biomimetic tactile sensor array,” Advanced Robotics, vol. 22, no. 8, pp. 829–849, 2008.
  27. N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-robot simulator,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 3, 2004, pp. 2149–2154.
  28. E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and scalable robot simulation framework,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2013, pp. 1321–1326.
  29. W. Qiu and A. Yuille, “Unrealcv: Connecting computer vision to unreal engine,” in Proc. Eur. Conf. Comput. Vis, 2016, pp. 909–916.
  30. M. Denninger, M. Sundermeyer, D. Winkelbauer, D. Olefir, T. Hodan, Y. Zidan, M. Elbadrawy, M. Knauer, H. Katam, and A. Lodhi, “Blenderproc: Reducing the reality gap with photorealistic rendering,” in Proc. Int. Conf. Robotics: Science and Systems, 2020.
  31. H. Zhang, A. Opipari, X. Chen, J. Zhu, Z. Yu, and O. C. Jenkins, “Transnet: Category-level transparent object pose estimation,” in Proc. Eur. Conf. Comput. Vis, 2022, pp. 148–164.
  32. S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical simulation for autonomous vehicles,” in Field and service robotics.   Springer, 2018, pp. 621–635.
  33. M. Mousavi and R. Estrada, “Supercaustics: Real-time, open-source simulation of transparent objects for deep learning applications,” in Proc. IEEE Int. Conf. Mach. Learn. Appl., 2021, pp. 649–655.
  34. Y. Xu, H. Nagahara, A. Shimada, and R.-i. Taniguchi, “Transcut: Transparent object segmentation from a light-field image,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2015, pp. 3442–3450.
  35. J. Lin, Z. He, and R. W. Lau, “Rich context aggregation with reflection prior for glass surface detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 13 415–13 424.
  36. J. Jiang and S. Luo, “Robotic perception of object properties using tactile sensing,” in Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation.   Elsevier, 2022, pp. 23–44.
  37. J. Theiler, “Estimating fractal dimension,” JOSA A, vol. 7, no. 6, pp. 1055–1073, 1990.
  38. Y. Ma, H. Hao, J. Xie, H. Fu, J. Zhang, J. Yang, Z. Wang, J. Liu, Y. Zheng, and Y. Zhao, “Rose: a retinal oct-angiography vessel segmentation dataset and new model,” IEEE Trans. Medical Imaging, vol. 40, no. 3, pp. 928–939, 2020.
  39. D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. IEEE Int. Conf. Comput. Vis., vol. 2, 1999, pp. 1150–1157.
  40. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (surf),” Comput. Vis. Image Underst., vol. 110, no. 3, pp. 346–359, 2008.
  41. K. McHenry, J. Ponce, and D. Forsyth, “Finding glass,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., vol. 2, 2005, pp. 973–979.
  42. K. McHenry and J. Ponce, “A geodesic active contour framework for finding glass,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., vol. 1, 2006, pp. 1038–1044.
  43. T. Wang, X. He, and N. Barnes, “Glass object localization by joint inference of boundary and depth,” in Proc. Int. Conf. Pattern Recognit., 2012, pp. 3783–3786.
  44. ——, “Glass object segmentation by label transfer on joint depth and appearance manifolds,” in Proc. IEEE Int. Conf. Image Process., 2013, pp. 2944–2948.
  45. R. C. Luo, P.-J. Lai, and V. W. S. Ee, “Transparent object recognition and retrieval for robotic bio-laboratory automation applications,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2015, pp. 5046–5051.
  46. C. Rother, V. Kolmogorov, and A. Blake, “” grabcut” interactive foreground extraction using iterated graph cuts,” ACM Trans. Graph., vol. 23, no. 3, pp. 309–314, 2004.
  47. A. Okazawa, T. Takahata, and T. Harada, “Simultaneous transparent and non-transparent object segmentation with multispectral scenes,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019, pp. 4977–4984.
  48. A. H. Madessa, J. Dong, X. Dong, Y. Gao, H. Yu, and I. Mugunga, “Leveraging an instance segmentation method for detection of transparent materials,” in Proc. IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, 2019, pp. 406–412.
  49. H. He, X. Li, G. Cheng, J. Shi, Y. Tong, G. Meng, V. Prinet, and L. Weng, “Enhanced boundary learning for glass-like object segmentation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 15 859–15 868.
  50. E. Xie, W. Wang, W. Wang, P. Sun, H. Xu, D. Liang, and P. Luo, “Segmenting transparent objects in the wild with transformer,” in Proc. Int. Joint Conf. Artif. Intell., 2021, pp. 1194–1200.
  51. Y. Cao, Z. Zhang, E. Xie, Q. Hou, K. Zhao, X. Luo, and J. Tuo, “Fakemix augmentation improves transparent object detection,” arXiv preprint arXiv:2103.13279, 2021.
  52. Z. Xu, B. Lai, L. Yuan, and T. Liu, “Real-time transparent object segmentation based on improved deeplabv3+,” in Proc. China Auto. Congress, 2021, pp. 4310–4315.
  53. L. Yu, H. Mei, W. Dong, Z. Wei, L. Zhu, Y. Wang, and X. Yang, “Progressive glass segmentation,” IEEE Trans. Image Process., vol. 31, pp. 2920–2933, 2022.
  54. J. Lin, Y. H. Yeung, and R. W. Lau, “Exploiting semantic relations for glass surface detection,” in Adv. Neural Inf. Process. Syst., 2022.
  55. E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, “Segformer: Simple and efficient design for semantic segmentation with transformers,” Adv. Neural Inf. Process. Syst., vol. 34, pp. 12 077–12 090, 2021.
  56. J. Lin, Y. H. Yeung, and R. W. Lau, “Depth-aware glass surface detection with cross-modal context mining,” arXiv preprint arXiv:2206.11250, 2022.
  57. J. Zhang, K. Yang, A. Constantinescu, K. Peng, K. Müller, and R. Stiefelhagen, “Trans4trans: Efficient transformer for transparent object and semantic scene segmentation in real-world navigation assistance,” IEEE Trans. Intell. Transport. Syst., vol. 23, no. 10, pp. 19 173–19 186, 2022.
  58. Z. Peng, W. Huang, S. Gu, L. Xie, Y. Wang, J. Jiao, and Q. Ye, “Conformer: Local features coupling global representations for visual recognition,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 367–376.
  59. S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention module,” in Proc. Eur. Conf. Comput. Vis, 2018, pp. 3–19.
  60. G. Narasimhan, K. Zhang, B. Eisner, X. Lin, and D. Held, “Self-supervised transparent liquid segmentation for robotic pouring,” in Proc. IEEE Int. Conf. Robot. Autom., 2022, pp. 4555–4561.
  61. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770–778.
  62. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2017, pp. 2961–2969.
  63. N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-net and its variants for medical image segmentation: A review of theory and applications,” IEEE Access, vol. 9, pp. 82 031–82 057, 2021.
  64. L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with atrous separable convolution for semantic image segmentation,” in Proc. Eur. Conf. Comput. Vis, 2018, pp. 801–818.
  65. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.
  66. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Proc. Eur. Conf. Comput. Vis, 2014, pp. 740–755.
  67. N. Li, C. Eastwood, and R. Fisher, “Learning object-centric representations of multi-object scenes from multiple views,” Adv. Neural Inf. Process. Syst., vol. 33, pp. 5656–5666, 2020.
  68. B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, “Labelme: a database and web-based tool for image annotation,” Int. J. Comput. Vis., vol. 77, no. 1, pp. 157–173, 2008.
  69. K.-K. Maninis, S. Caelles, J. Pont-Tuset, and L. Van Gool, “Deep extreme cut: From extreme points to object segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 616–625.
  70. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic superpixels compared to state-of-the-art superpixel methods,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282, 2012.
  71. J. Lee, S. Walsh, A. Harakeh, and S. L. Waslander, “Leveraging pre-trained 3d object detection models for fast ground truth generation,” in Proc. IEEE Int. Conf. Intell. Transp. Syst., 2018, pp. 2504–2510.
  72. N. Dong and E. P. Xing, “Few-shot semantic segmentation with prototype learning.” in BMVC, vol. 3, no. 4, 2018.
  73. W. Liu, C. Zhang, G. Lin, and F. Liu, “Crnet: Cross-reference networks for few-shot segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 4165–4173.
  74. B. Zhang, J. Xiao, and T. Qin, “Self-guided and cross-guided learning for few-shot segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 8312–8321.
  75. W. Shimoda and K. Yanai, “Self-supervised difference detection for weakly-supervised semantic segmentation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 5208–5217.
  76. A. Ziegler and Y. M. Asano, “Self-supervised learning of object parts for semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 14 502–14 511.
  77. Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value of network pruning,” in Proc. Int. Conf. Learning Representations, 2019.
  78. Q. Jin, L. Yang, and Z. Liao, “Adabits: Neural network quantization with adaptive bit-widths,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 2146–2156.
  79. D. Baranchuk, A. Voynov, I. Rubachev, V. Khrulkov, and A. Babenko, “Label-efficient semantic segmentation with diffusion models,” in Proc. Int. Conf. Learn. Representations, 2022.
  80. L. Zhu, A. Mousavian, Y. Xiang, H. Mazhar, J. van Eenbergen, S. Debnath, and D. Fox, “Rgb-d local implicit function for depth completion of transparent objects,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 4649–4658.
  81. H. Fang, H.-S. Fang, S. Xu, and C. Lu, “Transcg: A large-scale real-world dataset for transparent object depth completion and a grasping baseline,” IEEE Robot. Autom. Lett., vol. 7, no. 3, pp. 7383–7390, 2022.
  82. Q. Dai, J. Zhang, Q. Li, T. Wu, H. Dong, Z. Liu, P. Tan, and H. Wang, “Domain randomization-enhanced depth simulation and restoration for perceiving and grasping specular and transparent objects,” in Proc. Eur. Conf. Comput. Vis, 2022, pp. 374–391.
  83. E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in Proc. IEEE Int. Conf. Robot. Autom., 2011, pp. 3400–3407.
  84. S. Albrecht and S. Marsland, “Seeing the unseen: Simple reconstruction of transparent objects from point cloud data,” in Proc. 2nd RSS Workshop on Robots in Clutter, 2013.
  85. C. J. Phillips, M. Lecce, and K. Daniilidis, “Seeing glassware: from edge detection to pose estimation and shape recovery.” in Robotics: Science and Systems, vol. 3.   Michigan, USA, 2016, p. 3.
  86. J. De Bonet and P. Viola, “Roxels: Responsibility weighted 3d volume reconstruction,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., vol. 1, 1999, pp. 418–425.
  87. M. Potmesil, “Generating octree models of 3d objects from their silhouettes in a sequence of images,” Comput. Vis. Graph. Image Process., vol. 40, no. 1, pp. 1–29, 1987.
  88. A. Torres-Gómez and W. Mayol-Cuevas, “Recognition and reconstruction of transparent objects for augmented reality,” in Proc. IEEE Int. Symposium Mixed and Augmented Reality, 2014, pp. 129–134.
  89. Y. Ji, Q. Xia, and Z. Zhang, “Fusing depth and silhouette for scanning transparent object with rgb-d sensor,” Int. J. of Optics, vol. 2017, 2017.
  90. Z. Li, Y.-Y. Yeh, and M. Chandraker, “Through the looking glass: Neural 3d reconstruction of transparent shapes,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 1262–1271.
  91. Y. Zhu, J. Qiu, and B. Ren, “Transfusion: A novel slam method focused on transparent objects,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 6019–6028.
  92. U. Klank, D. Carton, and M. Beetz, “Transparent object detection and reconstruction on a mobile platform,” in Proc. IEEE Int. Conf. Robot. Autom., 2011, pp. 5971–5978.
  93. B. Mildenhall, P. Srinivasan, M. Tancik, J. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” in Proc. Eur. Conf. Comput. Vis, 2020, pp. 405–421.
  94. A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-nerf: Neural radiance fields for dynamic scenes,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 10 318–10 327.
  95. P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and P. Debevec, “Baking neural radiance fields for real-time view synthesis,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 5875–5884.
  96. T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics primitives with a multiresolution hash encoding,” ACM Trans. Graph., vol. 41, no. 4, jul 2022.
  97. Y. Liu, S. Peng, L. Liu, Q. Wang, P. Wang, C. Theobalt, X. Zhou, and W. Wang, “Neural rays for occlusion-aware image-based rendering,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 7824–7833.
  98. Y. Tang, J. Chen, Z. Yang, Z. Lin, Q. Li, and W. Liu, “Depthgrasp: Depth completion of transparent objects using self-attentive adversarial network with spectral residual for grasping,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 5710–5716.
  99. K. Chen, S. Wang, B. Xia, D. Li, Z. Kan, and B. Li, “Tode-trans: Transparent object depth estimation with transformer,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 4880–4886.
  100. D. Miyazaki, M. Kagesawa, and K. Ikeuchi, “Transparent surface modeling from a pair of polarization images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 1, pp. 73–82, 2004.
  101. R. Rantoson, C. Stolz, D. Fofi, and F. Mériaudeau, “3d reconstruction of transparent objects exploiting surface fluorescence caused by uv irradiation,” in Proc. IEEE Int. Conf. Image Process., 2010, pp. 2965–2968.
  102. S.-K. Yeung, T.-P. Wu, C.-K. Tang, T. F. Chan, and S. J. Osher, “Normal estimation of a transparent object using a video,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 4, pp. 890–897, 2014.
  103. K. Han, K.-Y. K. Wong, and M. Liu, “A fixed viewpoint approach for dense reconstruction of transparent objects,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2015, pp. 4001–4008.
  104. Y. Qian, M. Gong, and Y. H. Yang, “3d reconstruction of transparent objects with position-normal consistency,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2016, pp. 4369–4377.
  105. B. Wu, Y. Zhou, Y. Qian, M. Cong, and H. Huang, “Full 3d reconstruction of transparent objects,” ACM Trans. Graph., vol. 37, no. 4, pp. 1–11, 2018.
  106. Y. Zhang and T. Funkhouser, “Deep depth completion of a single rgb-d image,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 175–185.
  107. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Adv. Neural Inf. Process. Syst., vol. 30, 2017.
  108. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 10 012–10 022.
  109. Y. Luo, Y. Li, M. Foshey, W. Shou, P. Sharma, T. Palacios, A. Torralba, and W. Matusik, “Intelligent carpet: Inferring 3d human pose from tactile signals,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 11 255–11 265.
  110. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2223–2232.
  111. N. Nguyen and J. M. Chang, “Csnas: Contrastive self-supervised learning neural architecture search via sequential model-based optimization,” IEEE Trans. Artif. Intell., vol. 3, no. 4, pp. 609–624, 2022.
  112. C. Wang, C. Xu, and D. Tao, “Self-supervised pose adaptation for cross-domain image animation,” IEEE Trans. Artif. Intell., vol. 1, no. 1, pp. 34–46, 2020.
  113. X. Liu, S. Iwase, and K. M. Kitani, “Stereobj-1m: Large-scale stereo image dataset for 6d object pose estimation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 10 870–10 879.
  114. P. Wang, H. Jung, Y. Li, S. Shen, R. P. Srikanth, L. Garattoni, S. Meier, N. Navab, and B. Busam, “Phocal: A multi-modal dataset for category-level object pose estimation with photometrically challenging objects,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 21 222–21 231.
  115. Y. R. Wang, Y. Zhao, H. Xu, S. Eppel, A. Aspuru-Guzik, F. Shkurti, and A. Garg, “Mvtrans: Multi-view perception of transparent objects,” Proc. IEEE Int. Conf. Robot. Autom., pp. 3771–3778, 2023.
  116. J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain randomization for transferring deep neural networks from simulation to the real world,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017, pp. 23–30.
  117. S. Zhao, H. Fu, M. Gong, and D. Tao, “Geometry-aware symmetric domain adaptation for monocular depth estimation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 9788–9798.
  118. Y. Zhu, X. Wu, Y. Li, J. Qiang, and Y. Yuan, “Self-adaptive imbalanced domain adaptation with deep sparse autoencoder,” IEEE Trans. Artif. Intell., vol. 1, no. 1, pp. 1–12, 2022.
  119. N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser, K. Okada, A. Rodriguez, J. M. Romano, and P. R. Wurman, “Analysis and observations from the first amazon picking challenge,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 1, pp. 172–188, 2016.
  120. H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, “Safe local exploration for replanning in cluttered unknown environments for microaerial vehicles,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 1474–1481, 2018.
  121. X. Chen, H. Zhang, Z. Yu, S. Lewis, and O. C. Jenkins, “Progresslabeller: Visual data stream annotation for training object-centric 3d perception,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 13 066–13 073.
  122. I. Lysenkov, V. Eruhimov, and G. Bradski, “Recognition and pose estimation of rigid transparent objects with a kinect sensor,” Robotics, vol. 273, no. 273-280, p. 2, 2013.
  123. M. Byambaa, G. Koutaki, and L. Choimaa, “6d pose estimation of transparent object from single rgb image for robotic manipulation,” IEEE Access, vol. 10, pp. 114 897–114 906, 2022.
  124. K. Chen, S. James, C. Sui, Y.-H. Liu, P. Abbeel, and Q. Dou, “Stereopose: Category-level 6d transparent object pose estimation from stereo images via back-view nocs,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 2855–2861.
  125. C. Xu, J. Chen, M. Yao, J. Zhou, L. Zhang, and Y. Liu, “6dof pose estimation of transparent object from a single rgb-d image,” Sensors, vol. 20, no. 23, p. 6790, 2020.
  126. D. Gao, Y. Li, P. Ruhkamp, I. Skobleva, M. Wysocki, H. Jung, P. Wang, A. Guridi, and B. Busam, “Polarimetric pose prediction,” in Proc. Eur. Conf. Comput. Vis.   Springer, 2022, pp. 735–752.
  127. Z. Zhou, Z. Sui, and O. C. Jenkins, “Plenoptic monte carlo object localization for robot grasping under layered translucency,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 1–8.
  128. C. Wang, D. Xu, Y. Zhu, R. Martín-Martín, C. Lu, L. Fei-Fei, and S. Savarese, “Densefusion: 6d object pose estimation by iterative dense fusion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3343–3352.
  129. L. Zou, Z. Huang, N. Gu, and G. Wang, “6d-vit: Category-level 6d object pose estimation via transformer-based instance representation learning,” IEEE Trans. Image Process., vol. 31, pp. 6907–6921, 2022.
  130. G. Wang, F. Manhardt, F. Tombari, and X. Ji, “Gdr-net: Geometry-guided direct regression network for monocular 6d object pose estimation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 16 611–16 621.
  131. H. Chen, P. Wang, F. Wang, W. Tian, L. Xiong, and H. Li, “Epro-pnp: Generalized end-to-end probabilistic perspective-n-points for monocular object pose estimation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 2781–2790.
  132. J. Zhu, A. Cherubini, C. Dune, D. Navarro-Alarcon, F. Alambeigi, D. Berenson, F. Ficuciello, K. Harada, J. Kober, X. Li et al., “Challenges and outlook in robotic manipulation of deformable objects,” IEEE Robot. & Automa. Magazine, vol. 29, no. 3, pp. 67–77, 2022.
  133. Z. Zhou, T. Pan, S. Wu, H. Chang, and O. C. Jenkins, “Glassloc: Plenoptic grasp pose detection in transparent clutter,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019, pp. 4776–4783.
  134. T. Weng, A. Pallankize, Y. Tang, O. Kroemer, and D. Held, “Multi-modal transfer learning for grasping transparent and specular objects,” IEEE Robot. Autom. Lett., vol. 5, no. 3, pp. 3791–3798, 2020.
  135. M. Veres, I. Cabral, and M. Moussa, “Incorporating object intrinsic features within deep grasp affordance prediction,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 6009–6016, 2020.
  136. W. Liang, F. Fang, C. Acar, W. Q. Toh, Y. Sun, Q. Xu, and Y. Wu, “Visuo-tactile feedback-based robot manipulation for object packing,” IEEE Robot. Autom. Lett., vol. 8, no. 2, pp. 1151–1158, 2023.
  137. A. Kramer, K. Harlow, C. Williams, and C. Heckman, “Coloradar: The direct 3d millimeter wave radar dataset,” Int. J. Robot. Research, vol. 41, no. 4, pp. 351–360, 2022.
  138. A. Sengupta, F. Jin, R. Zhang, and S. Cao, “mm-pose: Real-time human skeletal posture estimation using mmwave radars and cnns,” IEEE Sens. J., vol. 20, no. 17, pp. 10 032–10 044, 2020.
Citations (18)

Summary

We haven't generated a summary for this paper yet.