Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Synergistic Graph Fusion via Encoder Embedding (2303.18051v4)

Published 31 Mar 2023 in cs.SI and stat.ML

Abstract: In this paper, we introduce a method called graph fusion embedding, designed for multi-graph embedding with shared vertex sets. Under the framework of supervised learning, our method exhibits a remarkable and highly desirable synergistic effect: for sufficiently large vertex size, the accuracy of vertex classification consistently benefits from the incorporation of additional graphs. We establish the mathematical foundation for the method, including the asymptotic convergence of the embedding, a sufficient condition for asymptotic optimal classification, and the proof of the synergistic effect for vertex classification. Our comprehensive simulations and real data experiments provide compelling evidence supporting the effectiveness of our proposed method, showcasing the pronounced synergistic effect for multiple graphs from disparate sources.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets