Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a Probabilistic Approach for Inverse Data-Driven Optimal Control (2303.17957v3)

Published 31 Mar 2023 in math.OC, cs.SY, and eess.SY

Abstract: We consider the problem of estimating the possibly non-convex cost of an agent by observing its interactions with a nonlinear, non-stationary and stochastic environment. For this inverse problem, we give a result that allows to estimate the cost by solving a convex optimization problem. To obtain this result we also tackle a forward problem. This leads to the formulation of a finite-horizon optimal control problem for which we show convexity and find the optimal solution. Our approach leverages certain probabilistic descriptions that can be obtained both from data and/or from first-principles. The effectiveness of our results, which are turned in an algorithm, is illustrated via simulations on the problem of estimating the cost of an agent that is stabilizing the unstable equilibrium of a pendulum.

Citations (2)

Summary

We haven't generated a summary for this paper yet.