Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constraining ultralight dark matter using the Fermi-LAT pulsar timing array (2303.17545v2)

Published 30 Mar 2023 in astro-ph.HE, astro-ph.CO, gr-qc, and hep-ph

Abstract: Ultralight dark matter (ULDM) is proposed as a theoretical candidate of dark matter particles with masses of approximately $10{-22}$ eV. The interactions between ULDM particles and standard model particles would cause variations in pulse arrival times of millisecond pulsars, which means that the pulsar timing array (PTA) can be used to indirectly detect ULDM. In this letter, we use the gamma-ray PTA composed of 29 millisecond pulsars observed by the Fermi Large Area Telescope (Fermi-LAT) to test four ULDM effects, including gravitational effects for generalized ULDM with different Spin-0/1, the fifth-force coupling effect of dark photon, and the modified gravitational effect of the Spin-2 ULDM. The gamma-ray pulsar timing is not affected by the ionized interstellar medium and suffers relatively simple noises, unlike that of the radio band. Our work is the first time that the gamma-ray PTA has been used to search for the ULDM. No significant signals of ULDM are found based on the Fermi-LAT PTA for all four kinds of ULDM models. Constraints on ULDM parameters are set with the 95% confidence level, which provides a complementary check of the nondetection of ULDM for radio PTAs and direct detection experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. Planck Collaboration et al., “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys 594, A13 (2016), arXiv:1502.01589.
  2. K. Garrett and G. Dūda, “Dark Matter: A Primer,” Advances in Astronomy 2011, 968283 (2011), arXiv:1006.2483.
  3. S. Weinberg, “A new light boson?” Phys. Rev. Lett. 40, 223 (1978).
  4. A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, and O. Ruchayskiy, “Sterile neutrino Dark Matter,” Progress in Particle and Nuclear Physics 104, 1 (2019), arXiv:1807.07938.
  5. R. Essig et al., “Dark Sectors and New, Light, Weakly-Coupled Particles,” arXiv e-prints , arXiv:1311.0029 (2013), arXiv:1311.0029.
  6. W. Hu, R. Barkana, and A. Gruzinov, “Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles,” Phys. Rev. Lett.  85, 1158 (2000), arXiv:astro-ph/0003365.
  7. C. P. Burgess, J. P. Conlon, L.-Y. Hung, C. H. Kom, A. Maharana, and F. Quevedo, “Continuous Global Symmetries and Hyperweak Interactions in String Compactifications,” JHEP 07, 073 (2008), arXiv:0805.4037.
  8. M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald, “Naturally Light Hidden Photons in LARGE Volume String Compactifications,” JHEP 11, 027 (2009), arXiv:0909.0515.
  9. M. Cicoli, M. Goodsell, J. Jaeckel, and A. Ringwald, “Testing String Vacua in the Lab: From a Hidden CMB to Dark Forces in Flux Compactifications,” JHEP 07, 114 (2011), arXiv:1103.3705.
  10. J. Zhang, Y.-L. Sming Tsai, J.-L. Kuo, K. Cheung, and M.-C. Chu, “Ultralight Axion Dark Matter and Its Impact on Dark Halo Structure in N-body Simulations,” Astrophys. J. 853, 51 (2018), arXiv:1611.00892.
  11. J. S. Bullock and M. Boylan-Kolchin, “Small-Scale Challenges to the ΛΛ\Lambdaroman_ΛCDM Paradigm,” Annu. Rev. Astron. Astrophys. 55, 343 (2017), arXiv:1707.04256.
  12. E. Kendall and R. Easther, “The core-cusp problem revisited: ULDM vs. CDM,” Publ. Astron. Soc. Australia 37, e009 (2020), arXiv:1908.02508.
  13. J. C. Niemeyer, “Small-scale structure of fuzzy and axion-like dark matter,” Progress in Particle and Nuclear Physics 113, 103787 (2020), arXiv:1912.07064.
  14. N. K. Porayko and K. A. Postnov, “Constraints on ultralight scalar dark matter from pulsar timing,” Phys. Rev. D 90, 062008 (2014), arXiv:1408.4670.
  15. L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, “Ultralight scalars as cosmological dark matter,” Phys. Rev. D 95, 043541 (2017), arXiv:1610.08297.
  16. D. Blas, D. L. Nacir, and S. Sibiryakov, “Ultralight Dark Matter Resonates with Binary Pulsars,” Phys. Rev. Lett.  118, 261102 (2017), arXiv:1612.06789.
  17. I. De Martino, T. Broadhurst, S. H. H. Tye, T. Chiueh, H.-Y. Schive, and R. Lazkoz, “Recognising Axionic Dark Matter by Compton and de-Broglie Scale Modulation of Pulsar Timing,” Phys. Rev. Lett.  119, 221103 (2017), arXiv:1705.04367.
  18. G.-W. Yuan., Z.-Q. Xia, C. Tang, Y. Zhao, Y.-F. Cai, Y. Chen, J. Shu, and Q. Yuan, “Testing the alp-photon coupling with polarization measurements of sagittarius a*,” Journal of Cosmology and Astroparticle Physics 2021, 018 (2021).
  19. H.-K. Guo, Y. Ma, J. Shu, X. Xue, Q. Yuan, and Y. Zhao, “Detecting dark photon dark matter with gaia-like astrometry observations,” Journal of Cosmology and Astroparticle Physics 2019, 015 (2019).
  20. H. Davoudiasl and P. B. Denton, “Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M 87*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT,” Phys. Rev. Lett.  123, 021102 (2019), arXiv:1904.09242.
  21. M. Fabbrichesi, E. Gabrielli, and G. Lanfranchi, “The Dark Photon,” arXiv e-prints , arXiv:2005.01515 (2020), arXiv:2005.01515.
  22. A. Caputo, A. J. Millar, C. A. J. O’Hare, and E. Vitagliano, “Dark photon limits: A handbook,” Phys. Rev. D 104, 095029 (2021), arXiv:2105.04565.
  23. G.-W. Yuan, Z.-Q. Shen, Y.-L. S. Tsai, Q. Yuan, and Y.-Z. Fan, “Constraining ultralight bosonic dark matter with keck observations of s2’s orbit and kinematics,” Phys. Rev. D 106, 103024 (2022).
  24. L. Marzola, M. Raidal, and F. R. Urban, “Oscillating Spin-2 Dark Matter,” Phys. Rev. D 97, 024010 (2018), arXiv:1708.04253.
  25. K. Aoki and K.-i. Maeda, “Condensate of Massive Graviton and Dark Matter,” Phys. Rev. D 97, 044002 (2018), arXiv:1707.05003.
  26. E. Novikov, “Ultralight gravitons with tiny electric dipole moment are seeping from the vacuum,” Modern Physics Letters A 31, 1650092 (2016).
  27. S. Sun, X.-Y. Yang, and Y.-L. Zhang, “Pulsar timing residual induced by wideband ultralight dark matter with spin 0,1,2,” Phys. Rev. D 106, 066006 (2022), arXiv:2112.15593.
  28. Y. Chen, X. Xue, R. Brito, and V. Cardoso, “Photon Ring Astrometry for Superradiant Clouds,” Phys. Rev. Lett.  130, 111401 (2023), arXiv:2211.03794.
  29. G. Hobbs et al., “The International Pulsar Timing Array project: using pulsars as a gravitational wave detector,” Classical and Quantum Gravity 27, 084013 (2010), arXiv:0911.5206.
  30. G. Hobbs, “Pulsars as gravitational wave detectors,” in High-Energy Emission from Pulsars and their Systems, Astrophysics and Space Science Proceedings, Vol. 21 (2011) p. 229, arXiv:1006.3969.
  31. A. Khmelnitsky and V. Rubakov, “Pulsar timing signal from ultralight scalar dark matter,” JCAP 02, 019 (2014), arXiv:1309.5888.
  32. N. K. Porayko et al., ‘‘Parkes Pulsar Timing Array constraints on ultralight scalar-field dark matter,” Phys. Rev. D 98, 102002 (2018), arXiv:1810.03227.
  33. K. Nomura, A. Ito, and J. Soda, “Pulsar timing residual induced by ultralight vector dark matter,” European Physical Journal C 80, 419 (2020), arXiv:1912.10210.
  34. Y.-M. Wu et al., “Constraining ultralight vector dark matter with the Parkes Pulsar Timing Array second data release,” Phys. Rev. D 106, L081101 (2022), arXiv:2210.03880.
  35. X. Xue et al. (PPTA Collaboration), “High-precision search for dark photon dark matter with the Parkes Pulsar Timing Array,” Phys. Rev. Res. 4, L012022 (2022), arXiv:2112.07687.
  36. J. M. Armaleo, D. López Nacir, and F. R. Urban, “Pulsar timing array constraints on spin-2 ULDM,” JCAP 09, 031 (2020), arXiv:2005.03731.
  37. X. Xue et al., “Constraining Cosmological Phase Transitions with the Parkes Pulsar Timing Array,” Phys. Rev. Lett.  127, 251303 (2021), arXiv:2110.03096.
  38. C. Unal, F. R. Urban, and E. D. Kovetz, “Probing ultralight scalar, vector and tensor dark matter with pulsar timing arrays,” arXiv e-prints , arXiv:2209.02741 (2022), arXiv:2209.02741.
  39. D. E. Kaplan, A. Mitridate, and T. Trickle, “Constraining fundamental constant variations from ultralight dark matter with pulsar timing arrays,” Phys. Rev. D 106, 035032 (2022), arXiv:2205.06817.
  40. R. N. Manchester et al., “The Parkes Pulsar Timing Array Project,” Publ. Astron. Soc. Australia 30, e017 (2013), arXiv:1210.6130.
  41. M. Kerr et al., “The Parkes Pulsar Timing Array project: second data release,” Publ. Astron. Soc. Australia 37, e020 (2020), arXiv:2003.09780.
  42. M. Kramer and D. J. Champion, “The european pulsar timing array and the large european array for pulsars,” Classical and Quantum Gravity 30, 224009 (2013).
  43. G. Desvignes et al., ‘‘High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array,” Mon. Not. R. Astron. Soc. 458, 3341 (2016), arXiv:1602.08511.
  44. M. A. McLaughlin, “The north american nanohertz observatory for gravitational waves,” Classical and Quantum Gravity 30, 224008 (2013).
  45. Z. Arzoumanian et al., “The nanograv 12.5 yr data set: Search for an isotropic stochastic gravitational-wave background,” The Astrophysical Journal Letters 905, L34 (2020).
  46. R. Nan, D. Li, C. Jin, Q. Wang, L. Zhu, W. Zhu, H. Zhang, Y. Yue, and L. Qian, “The Five-Hundred Aperture Spherical Radio Telescope (fast) Project,” International Journal of Modern Physics D 20, 989 (2011), arXiv:1105.3794.
  47. D. Li et al., “FAST in Space: Considerations for a Multibeam, Multipurpose Survey Using China’s 500-m Aperture Spherical Radio Telescope (FAST),” IEEE Microwave Magazine 19, 112 (2018), arXiv:1802.03709.
  48. M. Ajello et al. (Fermi-LAT Collaboration), “A gamma-ray pulsar timing array constrains the nanohertz gravitational wave background,” Science 376, abm3231 (2022), arXiv:2204.05226.
  49. J. W. Foster, N. L. Rodd, and B. R. Safdi, “Revealing the dark matter halo with axion direct detection,” Phys. Rev. D 97, 123006 (2018), arXiv:1711.10489.
  50. G. P. Centers et al., “Stochastic fluctuations of bosonic dark matter,” Nature Commun. 12, 7321 (2021), arXiv:1905.13650.
  51. A. Castillo, J. Martin-Camalich, J. Terol-Calvo, D. Blas, A. Caputo, R. T. Génova Santos, L. Sberna, M. Peel, and J. A. Rubiño-Martín, “Searching for dark-matter waves with PPTA and QUIJOTE pulsar polarimetry,” J. Cosmol. Astropart. Phys. 2022, 014 (2022), arXiv:2201.03422.
  52. J. Bovy and S. Tremaine, “On the local dark matter density,” Astrophys. J. 756, 89 (2012), arXiv:1205.4033.
  53. S. Sivertsson, H. Silverwood, J. I. Read, G. Bertone, and P. Steger, “The localdark matter density from SDSS-SEGUE G-dwarfs,” Mon. Not. Roy. Astron. Soc. 478, 1677 (2018), arXiv:1708.07836.
  54. A. Pierce, K. Riles, and Y. Zhao, “Searching for Dark Photon Dark Matter with Gravitational Wave Detectors,” Phys. Rev. Lett. 121, 061102 (2018), arXiv:1801.10161.
  55. R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, “The Australia Telescope National Facility Pulsar Catalogue,” Astron. J. 129, 1993 (2005), arXiv:astro-ph/0412641.
  56. Z. Arzoumanian et al. (NANOGRAV Collaboration), “The NANOGrav 11-year Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave Background,” Astrophys. J. 859, 47 (2018), arXiv:1801.02617.
  57. J. Bergé, P. Brax, G. Métris, M. Pernot-Borràs, P. Touboul, and J.-P. Uzan, “MICROSCOPE Mission: First Constraints on the Violation of the Weak Equivalence Principle by a Light Scalar Dilaton,” Phys. Rev. Lett. 120, 141101 (2018), arXiv:1712.00483.
  58. J. Luo et al., “PINT: A Modern Software Package for Pulsar Timing,” Astrophys. J. 911, 45 (2021), arXiv:2012.00074.
  59. J. A. Ellis, M. Vallisneri, S. R. Taylor, and P. T. Baker, “Enterprise: Enhanced numerical toolbox enabling a robust pulsar inference suite,” Zenodo (2020).
  60. J. Ellis and R. van Haasteren, “jellis18/ptmcmcsampler: Official release,”  (2017).
  61. S. S. Wilks, “The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses,” The Annals of Mathematical Statistics 9, 60 (1938).
  62. Y. Z. Fan et al., “Very Large Area Gamma-ray Space Telescope (VLAST),” Acta Astronomica Sinica 63, 27 (2022).
Citations (6)

Summary

We haven't generated a summary for this paper yet.