Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Q-fid: Quantum Circuit Fidelity Improvement with LSTM Networks (2303.17523v4)

Published 30 Mar 2023 in quant-ph, cs.AI, cs.ET, and cs.LG

Abstract: The fidelity of quantum circuits (QC) is influenced by several factors, including hardware characteristics, calibration status, and the transpilation process, all of which impact their susceptibility to noise. However, existing methods struggle to estimate and compare the noise performance of different circuit layouts due to fluctuating error rates and the absence of a standardized fidelity metric. In this work, Q-fid is introduced, a Long Short-Term Memory (LSTM) based fidelity prediction system accompanied by a novel metric designed to quantify the fidelity of quantum circuits. Q-fid provides an intuitive way to predict the noise performance of Noisy Intermediate-Scale Quantum (NISQ) circuits. This approach frames fidelity prediction as a Time Series Forecasting problem to analyze the tokenized circuits, capturing the causal dependence of the gate sequences and their impact on overall fidelity. Additionally, the model is capable of dynamically adapting to changes in hardware characteristics, ensuring accurate fidelity predictions under varying conditions. Q-fid achieves a high prediction accuracy with an average RMSE of 0.0515, up to 24.7x more accurate than the Qiskit transpile tool mapomatic. By offering a reliable method for fidelity prediction, Q-fid empowers developers to optimize transpilation strategies, leading to more efficient and noise-resilient quantum circuit implementations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.