Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast inference of latent space dynamics in huge relational event networks (2303.17460v1)

Published 29 Mar 2023 in cs.SI, cs.LG, stat.CO, and stat.ML

Abstract: Relational events are a type of social interactions, that sometimes are referred to as dynamic networks. Its dynamics typically depends on emerging patterns, so-called endogenous variables, or external forces, referred to as exogenous variables. Comprehensive information on the actors in the network, especially for huge networks, is rare, however. A latent space approach in network analysis has been a popular way to account for unmeasured covariates that are driving network configurations. Bayesian and EM-type algorithms have been proposed for inferring the latent space, but both the sheer size many social network applications as well as the dynamic nature of the process, and therefore the latent space, make computations prohibitively expensive. In this work we propose a likelihood-based algorithm that can deal with huge relational event networks. We propose a hierarchical strategy for inferring network community dynamics embedded into an interpretable latent space. Node dynamics are described by smooth spline processes. To make the framework feasible for large networks we borrow from machine learning optimization methodology. Model-based clustering is carried out via a convex clustering penalization, encouraging shared trajectories for ease of interpretation. We propose a model-based approach for separating macro-microstructures and perform a hierarchical analysis within successive hierarchies. The method can fit millions of nodes on a public Colab GPU in a few minutes. The code and a tutorial are available in a Github repository.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Igor Artico (2 papers)
  2. Ernst Wit (17 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.