Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acoustic Soft Tactile Skin (AST Skin) (2303.17355v3)

Published 30 Mar 2023 in cs.RO

Abstract: This paper presents a novel soft tactile skin (STS) technology operating with sound waves. In this innovative approach, the sound waves generated by a speaker travel in channels embedded in a soft membrane and get modulated due to a deformation of the channel when pressed by an external force and received by a microphone at the end of the channel. The sensor leverages regression and classification methods for estimating the normal force and its contact location. Our sensor can be affixed to any robot part, e.g., end effectors or arm. We tested several regression and classifier methods to learn the relation between sound wave modulation, the applied force, and its location, respectively and picked the best-performing models for force and location predictions. Our novel tactile sensor yields 93% of the force estimation within 1.5 N tolerances for a range of 0-30+1 N and estimates contact locations with over 96% accuracy. We also demonstrated the performance of STS technology for a real-time gripping force control application.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. W. Mandil, V. Rajendran, K. Nazari, and A. Ghalamzan-Esfahani, “Tactile-sensing technologies: Trends, challenges and outlook in agri-food manipulation,” Sensors, vol. 23, no. 17, p. 7362, 2023.
  2. W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot tactile sensors for estimating geometry and force,” Sensors, vol. 17, no. 12, p. 2762, 2017.
  3. N. F. Lepora, “Soft biomimetic optical tactile sensing with the tactip: A review,” IEEE Sensors Journal, vol. 21, no. 19, pp. 21 131–21 143, 2021.
  4. M. Fritzsche, N. Elkmann, and E. Schulenburg, “Tactile sensing: A key technology for safe physical human robot interaction,” in Proceedings of the 6th International Conference on Human-robot Interaction, 2011, pp. 139–140.
  5. H. Yousef, M. Boukallel, and K. Althoefer, “Tactile sensing for dexterous in-hand manipulation in robotics—a review,” Sensors and Actuators A: physical, vol. 167, no. 2, pp. 171–187, 2011.
  6. K. Nazari, W. Mandill, M. Hanheide, and A. G. Esfahani, “Tactile dynamic behaviour prediction based on robot action,” in Towards Autonomous Robotic Systems: 22nd Annual Conference, TAROS 2021, Lincoln, UK, September 8–10, 2021, Proceedings 22.   Springer, 2021, pp. 284–293.
  7. W. Mandil, K. Nazari, and A. Ghalamzan, “Action Conditioned Tactile Prediction: case study on slip prediction,” in Proceedings of Robotics: Science and Systems, New York City, NY, USA, 6 2022.
  8. K. Nazari, W. Mandil, and A. M. G. Esfahani, “Proactive slip control by learned slip model and trajectory adaptation,” in Conference on Robot Learning.   PMLR, 2023, pp. 751–761.
  9. K. Nazari, G. Gandolfi, Z. Talebpour, V. Rajendran, P. Rocco et al., “Deep functional predictive control for strawberry cluster manipulation using tactile prediction,” arXiv preprint arXiv:2303.05393, 2023.
  10. R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile sensing—from humans to humanoids,” IEEE transactions on robotics, vol. 26, no. 1, pp. 1–20, 2009.
  11. J. Dargahi and S. Najarian, “Advances in tactile sensors design/manufacturing and its impact on robotics applications–a review,” Industrial Robot: An International Journal, 2005.
  12. J. Zimmer, T. Hellebrekers, T. Asfour, C. Majidi, and O. Kroemer, “Predicting grasp success with a soft sensing skin and shape-memory actuated gripper,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 7120–7127.
  13. Q. Li, Z. Ullah, W. Li, Y. Guo, J. Xu, R. Wang, Q. Zeng, M. Chen, C. Liu, and L. Liu, “Wide-range strain sensors based on highly transparent and supremely stretchable graphene/ag-nanowires hybrid structures,” Small, vol. 12, no. 36, pp. 5058–5065, 2016.
  14. K. Song, S. H. Kim, S. Jin, S. Kim, S. Lee, J.-S. Kim, J.-M. Park, and Y. Cha, “Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system,” Scientific reports, vol. 9, no. 1, p. 8988, 2019.
  15. M. Rehan, M. M. Saleem, M. I. Tiwana, R. I. Shakoor, and R. Cheung, “A soft multi-axis high force range magnetic tactile sensor for force feedback in robotic surgical systems,” Sensors, vol. 22, no. 9, p. 3500, 2022.
  16. G. Diguet, J. Froemel, M. Muroyama, and K. Ohtaka, “Tactile sensing using magnetic foam,” Polymers, vol. 14, no. 4, p. 834, 2022.
  17. H. Wu, B. Zheng, H. Wang, and J. Ye, “New flexible tactile sensor based on electrical impedance tomography,” Micromachines, vol. 13, no. 2, p. 185, 2022.
  18. B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E. Giannaccini, J. Rossiter, and N. F. Lepora, “The tactip family: Soft optical tactile sensors with 3d-printed biomimetic morphologies,” Soft robotics, vol. 5, no. 2, pp. 216–227, 2018.
  19. D. F. Gomes and S. Luo, “Geltip tactile sensor for dexterous manipulation in clutter,” in Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation.   Elsevier, 2022, pp. 3–21.
  20. E. Donlon, S. Dong, M. Liu, J. Li, E. Adelson, and A. Rodriguez, “Gelslim: A high-resolution, compact, robust, and calibrated tactile-sensing finger,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 1927–1934.
  21. M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most, D. Stroud, R. Santos, A. Byagowi, G. Kammerer et al., “Digit: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 3838–3845, 2020.
  22. Z. Chen, S. Zhang, S. Luo, F. Sun, and B. Fang, “Tacchi: A pluggable and low computational cost elastomer deformation simulator for optical tactile sensors,” IEEE Robotics and Automation Letters, vol. 8, no. 3, pp. 1239–1246, 2023.
  23. C. Sferrazza and R. D’Andrea, “Design, motivation and evaluation of a full-resolution optical tactile sensor,” Sensors, vol. 19, no. 4, p. 928, 2019.
  24. D. Gong, R. He, J. Yu, and G. Zuo, “A pneumatic tactile sensor for co-operative robots,” Sensors, vol. 17, no. 11, p. 2592, 2017.
  25. C.-H. Chuang, H.-K. Weng, J.-W. Chen, and M. O. Shaikh, “Ultrasonic tactile sensor integrated with tft array for force feedback and shape recognition,” Sensors and Actuators A: Physical, vol. 271, pp. 348–355, 2018.
  26. H. Shinoda, K. Matsumoto, and S. Ando, “Acoustic resonant tensor cell for tactile sensing,” in Proceedings of International conference on Robotics and Automation, vol. 4.   IEEE, 1997, pp. 3087–3092.
  27. Y. Tanaka, T. Fukuda, M. Fujiwara, and A. Sano, “Tactile sensor using acoustic reflection for lump detection in laparoscopic surgery,” International journal of computer assisted radiology and surgery, vol. 10, pp. 183–193, 2015.
  28. K. Teramoto and K. Watanabe, “Acoustical tactile sensor utilizing multiple reflections for principal curvature measurement,” in SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No. 01TH8603).   IEEE, 2001, pp. 339–344.
  29. K. Park, H. Yuk, M. Yang, J. Cho, H. Lee, and J. Kim, “A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing,” Science Robotics, vol. 7, no. 67, p. eabm7187, 2022.
  30. B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar, “Benchmarking in manipulation research: The ycb object and model set and benchmarking protocols,” arXiv preprint arXiv:1502.03143, 2015.
  31. G. Zöller, V. Wall, and O. Brock, “Active acoustic contact sensing for soft pneumatic actuators,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 7966–7972.
  32. V. Wall, G. Zöller, and O. Brock, “Passive and active acoustic sensing for soft pneumatic actuators,” arXiv preprint arXiv:2208.10299, 2022.
  33. H. Shinoda and S. Ando, “A tactile sensor with 5-d deformation sensing element,” in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1.   IEEE, 1996, pp. 7–12.
  34. G. Zöller, V. Wall, and O. Brock, “Acoustic sensing for soft pneumatic actuators,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 6986–6991.
  35. V. Rajendran, S. Parsons, and A. Ghalamzan, “Towards continuous acoustic tactile soft sensing,” International Conference on Automation and Robotics, 2023.
  36. V. Rajendran, “Ast2: Single and bi-layered 2-d acoustic soft tactile skin,” International Conference on Soft Robotics, 2023.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com