Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Essential Algorithms for the Matrix Chain (2303.17352v1)

Published 30 Mar 2023 in cs.DM

Abstract: For a given product of $n$ matrices, the matrix chain multiplication problem asks for a parenthesisation that minimises the number of arithmetic operations. In 1973, Godbole presented a now classical dynamic programming formulation with cubic time complexity on the length of the chain. The best known algorithms run in linearithmic time, and the best known approximation algorithms run in linear time with an approximation factor smaller than two. All solutions have in common that they select an optimal parenthesisation from a set of $C_{n-1}$ (Catalan number $n - 1$) distinct parenthesisations. We studied the set of parenthesisations and discovered (a) that all of the exponentially many parenthesisations are useful in the sense that they are optimal in an infinite subset of the input space, (b) that only $n + 1$ parenthesisations are essential in the sense that they are arbitrarily better than the second best on an infinite subset of the input space, and (c) that the best essential parenthesisation is never more than twice as costly as the best non-essential parenthesisation. Through random sampling of the input space, we further discovered that the set of essential parenthesisations includes an optimal parenthesisation in the vast majority of inputs, and that the best essential parenthesisation is on average much closer to optimal than the worst-case bound. The results have direct consequences for the development of compilers for linear algebra expressions where the matrix sizes are unknown at compile-time.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com