Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new zero-free region for Rankin-Selberg $L$-functions (2303.16889v6)

Published 29 Mar 2023 in math.NT

Abstract: Let $\pi$ and $\pi'$ be cuspidal automorphic representations of $\mathrm{GL}(n)$ and $\mathrm{GL}(n')$ with unitary central characters. We establish a new zero-free region for all $\mathrm{GL}(1)$-twists of the Rankin-Selberg $L$-function $L(s,\pi\times\pi')$, generalizing Siegel's celebrated work on Dirichlet $L$-functions. As an application, we prove the first unconditional Siegel-Walfisz theorem for the Dirichlet coefficients of $-L'(s,\pi\times\pi')/L(s,\pi\times\pi')$. Also, for $n\leq 8$, we extend the region of holomorphy and nonvanishing for the twisted symmetric power $L$-functions $L(s,\pi,\mathrm{Sym}n\otimes\chi)$ of any cuspidal automorphic representation of $\mathrm{GL}(2)$.

Summary

We haven't generated a summary for this paper yet.