Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Deep Hedging (2303.16585v2)

Published 29 Mar 2023 in quant-ph, cs.LG, and q-fin.CP

Abstract: Quantum machine learning has the potential for a transformative impact across industry sectors and in particular in finance. In our work we look at the problem of hedging where deep reinforcement learning offers a powerful framework for real markets. We develop quantum reinforcement learning methods based on policy-search and distributional actor-critic algorithms that use quantum neural network architectures with orthogonal and compound layers for the policy and value functions. We prove that the quantum neural networks we use are trainable, and we perform extensive simulations that show that quantum models can reduce the number of trainable parameters while achieving comparable performance and that the distributional approach obtains better performance than other standard approaches, both classical and quantum. We successfully implement the proposed models on a trapped-ion quantum processor, utilizing circuits with up to $16$ qubits, and observe performance that agrees well with noiseless simulation. Our quantum techniques are general and can be applied to other reinforcement learning problems beyond hedging.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (80)
  1. “Deep hedging”. Quantitative Finance 19, 1271–1291 (2019). url: https://doi.org/10.1080/14697688.2019.1571683.
  2. “Deep Hedging: Hedging Derivatives Under Generic Market Frictions Using Reinforcement Learning”. SSRN Electronic Journal (2019). url: http://dx.doi.org/10.2139/ssrn.3355706.
  3. “Empirical Asset Pricing Via Machine Learning”. SSRN Electronic Journal (2018). url: http://dx.doi.org/10.2139/ssrn.3159577.
  4. Hyeong Kyu Choi. “Stock Price Correlation Coefficient Prediction with ARIMA-LSTM Hybrid Model” (2018). url: https://doi.org/10.48550/arXiv.1808.01560.
  5. “Pagan: Portfolio Analysis with Generative Adversarial Networks”. SSRN Electronic Journal (2020). url: https://dx.doi.org/10.2139/ssrn.3755355.
  6. “Stock Market Prediction Based on Generative Adversarial Network”. Procedia Computer Science 147, 400–406 (2019). url: https://doi.org/10.1016/j.procs.2019.01.256.
  7. “Deep Reinforcement Learning for Algorithmic Trading”. SSRN Electronic Journal (2021). url: https://dx.doi.org/10.2139/ssrn.3812473.
  8. “Deep Direct Reinforcement Learning for Financial Signal Representation and Trading”. IEEE Transactions on Neural Networks and Learning Systems 28, 653–664 (2017). url: https://doi.org/10.1109/TNNLS.2016.2522401.
  9. “A rigorous and robust quantum speed-up in supervised machine learning”. Nature Physics 2021 17:9 17, 1013–1017 (2021). url: https://doi.org/10.1038/s41567-021-01287-z.
  10. “The Power of Block-Encoded Matrix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation”. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1–33:14. Dagstuhl, Germany (2019). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. url: https://doi.org/10.4230/LIPIcs.ICALP.2019.33.
  11. “Optimizing quantum optimization algorithms via faster quantum gradient computation”. In Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Pages 1425–1444.  (2019). url: https://doi.org/10.1137/1.9781611975482.87.
  12. “Variational quantum algorithms”. Nature Reviews Physics 3, 625–644 (2021). url: https://doi.org/10.1038/s42254-021-00348-9.
  13. “Quantum Algorithms for Portfolio Optimization”. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies. Pages 147–155. Zurich Switzerland (2019). ACM. url: https://doi.org/10.1145/3318041.3355465.
  14. “Financial Risk Management on a Neutral Atom Quantum Processor” (2022). url: https://doi.org/10.48550/arXiv.2212.03223.
  15. “Quantum Machine Learning in Finance: Time Series Forecasting” (2022). url: https://doi.org/10.48550/arXiv.2202.00599.
  16. “Quantum computational finance: Monte Carlo pricing of financial derivatives”. Physical Review A 98, 022321 (2018). url: https://doi.org/10.1103/PhysRevA.98.022321.
  17. “Quantum Algorithm for Stochastic Optimal Stopping Problems with Applications in Finance”. In François Le Gall and Tomoyuki Morimae, editors, 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022). Volume 232 of Leibniz International Proceedings in Informatics (LIPIcs), pages 2:1–2:24. Dagstuhl, Germany (2022). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. url: https://doi.org/10.4230/LIPIcs.TQC.2022.2.
  18. “Constrained quantum optimization for extractive summarization on a trapped-ion quantum computer”. Scientific Reports12 (2022). url: https://doi.org/10.1038/s41598-022-20853-w.
  19. “A game plan for quantum computing”. McKinsey Quarterly (2020). url: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/a-game-plan-for-quantum-computing.
  20. “A survey of quantum computing for finance” (2022). url: https://doi.org/10.48550/arXiv.2201.02773.
  21. “Barren plateaus in quantum neural network training landscapes”. Nature Communications 9, 4812 (2018). url: https://doi.org/10.1038/s41467-018-07090-4.
  22. “Classical and Quantum Algorithms for Orthogonal Neural Networks” (2022). url: https://doi.org/10.48550/arXiv.2106.07198.
  23. “Enhancing Explainability of Neural Networks Through Architecture Constraints”. IEEE Transactions on Neural Networks and Learning Systems 32, 2610–2621 (2021). url: https://doi.org/10.1109/TNNLS.2020.3007259.
  24. “Orthogonal Deep Neural Networks”. IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 1352–1368 (2021). url: https://doi.org/10.1109/TPAMI.2019.2948352.
  25. “Discovering faster matrix multiplication algorithms with reinforcement learning”. Nature 610, 47–53 (2022). url: https://doi.org/10.1038/s41586-022-05172-4.
  26. “A Comparative Analysis of Expected and Distributional Reinforcement Learning”. Proceedings of the AAAI Conference on Artificial Intelligence 33, 4504–4511 (2019). url: https://doi.org/10.1609/aaai.v33i01.33014504.
  27. “Quantinuum H1-1, H1-2”. https://www.quantinuum.com/ (2022). Accessed: November 15-22, 2022; December 7-12, 2022.
  28. Daniel J. Brod. “Efficient classical simulation of matchgate circuits with generalized inputs and measurements”. Physical Review A93 (2016). url: https://doi.org/10.1103/physreva.93.062332.
  29. “Lie-algebraic classical simulations for variational quantum computing” (2023). url: https://doi.org/10.48550/arXiv.2308.01432.
  30. “Fermion sampling: A robust quantum computational advantage scheme using fermionic linear optics and magic input states”. PRX Quantum3 (2022). url: https://doi.org/10.1103%2Fprxquantum.3.020328.
  31. “Quantum Computation and Quantum Information: 10th Anniversary Edition”. Cambridge University Press.  (2012). 1 edition. url: https://doi.org/10.1017/CBO9780511976667.
  32. “Reinforcement Learning: An Introduction”. IEEE Transactions on Neural Networks 9, 1054–1054 (1998). url: https://doi.org/10.1109/TNN.1998.712192.
  33. “Deep Reinforcement Learning: A Brief Survey”. IEEE Signal Processing Magazine 34, 26–38 (2017). url: https://doi.org/10.1109/MSP.2017.2743240.
  34. “Deep Hedging: Learning to Simulate Equity Option Markets”. SSRN Electronic Journal (2019). url: https://dx.doi.org/10.2139/ssrn.3470756.
  35. “Deep Hedging: Learning to Remove the Drift under Trading Frictions with Minimal Equivalent Near-Martingale Measures” (2022). url: https://doi.org/10.48550/arXiv.2111.07844.
  36. “Multi-Asset Spot and Option Market Simulation”. SSRN Electronic Journal (2021). url: https://dx.doi.org/10.2139/ssrn.3980817.
  37. “Deep hedging: Continuous reinforcement learning for hedging of general portfolios across multiple risk aversions”. In Proceedings of the Third ACM International Conference on AI in Finance. Page 361–368. ICAIF ’22New York, NY, USA (2022). Association for Computing Machinery. url: https://doi.org/10.1145/3533271.3561731.
  38. “Quantum circuit learning”. Physical Review A 98, 032309 (2018). url: https://doi.org/10.1103/PhysRevA.98.032309.
  39. “Expressivity of Variational Quantum Machine Learning on the Boolean Cube” (2022). url: https://doi.org/10.1109/TQE.2023.3255206.
  40. “Classification with Quantum Neural Networks on Near Term Processors”. Technical report. Web of Open Science (2020). url: https://doi.org/10.48550/arXiv.1802.06002.
  41. “Data re-uploading for a universal quantum classifier”. Quantum 4, 226 (2020). url: https://doi.org/10.22331/q-2020-02-06-226.
  42. “Quantum Methods for Neural Networks and Application to Medical Image Classification”. Quantum 6, 881 (2022). url: https://doi.org/10.22331/q-2022-12-22-881.
  43. “A generative modeling approach for benchmarking and training shallow quantum circuits”. npj Quantum Information 5, 45 (2019). url: https://doi.org/10.1038/s41534-019-0157-8.
  44. “Variational Inference with a Quantum Computer”. Physical Review Applied 16, 044057 (2021). url: https://doi.org/10.1103/PhysRevApplied.16.044057.
  45. “A Survey on Quantum Reinforcement Learning” (2022). url: https://doi.org/10.48550/arXiv.2211.03464.
  46. “Supervised learning with quantum-enhanced feature spaces”. Nature 567, 209–212 (2019). url: https://doi.org/10.1038/s41586-019-0980-2.
  47. “Effect of data encoding on the expressive power of variational quantum-machine-learning models”. Physical Review A 103, 032430 (2021). url: https://doi.org/10.1103/PhysRevA.103.032430.
  48. “Input Redundancy for Parameterized Quantum Circuits”. Frontiers in Physics 8, 297 (2020). url: https://doi.org/10.3389/fphy.2020.00297.
  49. “Quantum Vision Transformers” (2022). url: https://doi.org/10.48550/arXiv.2209.08167.
  50. “Evaluating analytic gradients on quantum hardware”. Physical Review A 99, 032331 (2019). url: https://doi.org/10.1103/PhysRevA.99.032331.
  51. Iordanis Kerenidis. “A method for loading classical data into quantum states for applications in machine learning and optimization”. US Patent Application (2020). url: https://patents.google.com/patent/US20210319350A1.
  52. “Nearest centroid classification on a trapped ion quantum computer”. npj Quantum Information 7, 122 (2021). url: https://doi.org/10.1038/s41534-021-00456-5.
  53. “Quantum machine learning with subspace states” (2022). url: https://doi.org/10.48550/arXiv.2202.00054.
  54. “Attention is all you need”. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems. Volume 30. Curran Associates, Inc. (2017). url: https://doi.org/10.48550/arXiv.1706.03762.
  55. “Group-Invariant Quantum Machine Learning”. PRX Quantum 3, 030341 (2022). url: https://doi.org/10.1103/PRXQuantum.3.030341.
  56. “Grassmannian Learning: Embedding Geometry Awareness in Shallow and Deep Learning” (2018). url: https://doi.org/10.48550/arXiv.1808.02229.
  57. “A Convergence Theory for Over-parameterized Variational Quantum Eigensolvers” (2022). url: https://doi.org/10.48550/arXiv.2205.12481.
  58. “Theory of overparametrization in quantum neural networks” (2021). url: https://doi.org/10.1038/s43588-023-00467-6.
  59. “Diagnosing Barren Plateaus with Tools from Quantum Optimal Control”. Quantum 6, 824 (2022). url: https://doi.org/10.22331/q-2022-09-29-824.
  60. “Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group”. Communications in Mathematical Physics 264, 773–795 (2006). url: https://doi.org/10.1007/s00220-006-1554-3.
  61. “The Adjoint Is All You Need: Characterizing Barren Plateaus in Quantum Ansätze” (2023). url: https://doi.org/10.48550/arXiv.2309.07902.
  62. “A Unified Theory of Barren Plateaus for Deep Parametrized Quantum Circuits” (2023). url: https://doi.org/10.48550/arXiv.2309.09342.
  63. “Trainability and Expressivity of Hamming-Weight Preserving Quantum Circuits for Machine Learning” (2023). url: https://doi.org/10.48550/arXiv.2309.15547.
  64. “Escaping from the Barren Plateau via Gaussian Initializations in Deep Variational Quantum Circuits” (2022). url: https://doi.org/10.48550/arXiv.2203.09376.
  65. “Playing Atari with Hybrid Quantum-Classical Reinforcement Learning” (2021). url: https://doi.org/10.48550/arXiv.2107.04114.
  66. “Variational Quantum Circuits for Deep Reinforcement Learning”. IEEE Access 8, 141007–141024 (2020). url: https://doi.org/10.1109/ACCESS.2020.3010470.
  67. “Reinforcement Learning with Quantum Variational Circuit”. Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 16, 245–251 (2020). url: https://doi.org/10.1609/aiide.v16i1.7437.
  68. “Introduction to Quantum Reinforcement Learning: Theory and PennyLane-based Implementation”. In 2021 International Conference on Information and Communication Technology Convergence (ICTC). Pages 416–420. Jeju Island, Korea, Republic of (2021). IEEE. url: https://doi.org/10.1109/ICTC52510.2021.9620885.
  69. “Parametrized quantum policies for reinforcement learning”. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems. Volume 34, pages 28362–28375. Curran Associates, Inc. (2021). url: https://doi.org/10.48550/arXiv.2103.05577.
  70. “Unentangled quantum reinforcement learning agents in the OpenAI Gym” (2022). url: https://doi.org/10.48550/arXiv.2203.14348.
  71. “Quantum reinforcement learning via policy iteration”. Quantum Machine Intelligence 5, 30 (2023). url: https://doi.org/10.1007/s42484-023-00116-1.
  72. “Quantum algorithms for reinforcement learning with a generative model”. In International Conference on Machine Learning. Pages 10916–10926. PMLR (2021). url: https://doi.org/10.48550/arXiv.2112.08451.
  73. “Quantum policy gradient algorithms” (2022). url: https://doi.org/10.48550/arXiv.2212.09328.
  74. Arjan Cornelissen. “Quantum gradient estimation and its application to quantum reinforcement learning”. Master Thesis (2018). url: http://resolver.tudelft.nl/uuid:26fe945f-f02e-4ef7-bdcb-0a2369eb867e.
  75. “Quantum Computing Methods for Supply Chain Management”. In 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC). Pages 400–405. Seattle, WA, USA (2022). IEEE. url: https://doi.org/10.1109/SEC54971.2022.00059.
  76. “A distributional perspective on reinforcement learning”. In Proceedings of the 34th International Conference on Machine Learning - Volume 70. Pages 449–458. ICML’17Sydney, NSW, Australia (2017). JMLR.org. url: https://doi.org/10.48550/arXiv.1707.06887.
  77. “Distributional Reinforcement Learning With Quantile Regression”. Proceedings of the AAAI Conference on Artificial Intelligence32 (2018). url: https://doi.org/10.1609/aaai.v32i1.11791.
  78. “Pseudo-dimension of quantum circuits”. Quantum Machine Intelligence2 (2020). url: https://doi.org/10.1007%2Fs42484-020-00027-5.
  79. “Deep Bellman Hedging”. SSRN Electronic Journal (2022). url: https://dx.doi.org/10.2139/ssrn.4151026.
  80. “Distributional Reinforcement Learning via Moment Matching”. Proceedings of the AAAI Conference on Artificial Intelligence 35, 9144–9152 (2021). url: https://doi.org/10.1609/aaai.v35i10.17104.
Citations (22)

Summary

We haven't generated a summary for this paper yet.