Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint unsupervised and supervised learning for context-aware language identification (2303.16511v2)

Published 29 Mar 2023 in eess.AS

Abstract: Language identification (LID) recognizes the language of a spoken utterance automatically. According to recent studies, LID models trained with an automatic speech recognition (ASR) task perform better than those trained with a LID task only. However, we need additional text labels to train the model to recognize speech, and acquiring the text labels is a cost high. In order to overcome this problem, we propose context-aware language identification using a combination of unsupervised and supervised learning without any text labels. The proposed method learns the context of speech through masked LLMing (MLM) loss and simultaneously trains to determine the language of the utterance with supervised learning loss. The proposed joint learning was found to reduce the error rate by 15.6% compared to the same structure model trained by supervised-only learning on a subset of the VoxLingua107 dataset consisting of sub-three-second utterances in 11 languages.

Citations (1)

Summary

We haven't generated a summary for this paper yet.