Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tetra-AML: Automatic Machine Learning via Tensor Networks (2303.16214v1)

Published 28 Mar 2023 in cs.LG and quant-ph

Abstract: Neural networks have revolutionized many aspects of society but in the era of huge models with billions of parameters, optimizing and deploying them for commercial applications can require significant computational and financial resources. To address these challenges, we introduce the Tetra-AML toolbox, which automates neural architecture search and hyperparameter optimization via a custom-developed black-box Tensor train Optimization algorithm, TetraOpt. The toolbox also provides model compression through quantization and pruning, augmented by compression using tensor networks. Here, we analyze a unified benchmark for optimizing neural networks in computer vision tasks and show the superior performance of our approach compared to Bayesian optimization on the CIFAR-10 dataset. We also demonstrate the compression of ResNet-18 neural networks, where we use 14.5 times less memory while losing just 3.2% of accuracy. The presented framework is generic, not limited by computer vision problems, supports hardware acceleration (such as with GPUs and TPUs) and can be further extended to quantum hardware and to hybrid quantum machine learning models.

Citations (11)

Summary

We haven't generated a summary for this paper yet.