Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learnability, Sample Complexity, and Hypothesis Class Complexity for Regression Models (2303.16091v1)

Published 28 Mar 2023 in stat.ML, cs.IT, cs.LG, and math.IT

Abstract: The goal of a learning algorithm is to receive a training data set as input and provide a hypothesis that can generalize to all possible data points from a domain set. The hypothesis is chosen from hypothesis classes with potentially different complexities. Linear regression modeling is an important category of learning algorithms. The practical uncertainty of the target samples affects the generalization performance of the learned model. Failing to choose a proper model or hypothesis class can lead to serious issues such as underfitting or overfitting. These issues have been addressed by alternating cost functions or by utilizing cross-validation methods. These approaches can introduce new hyperparameters with their own new challenges and uncertainties or increase the computational complexity of the learning algorithm. On the other hand, the theory of probably approximately correct (PAC) aims at defining learnability based on probabilistic settings. Despite its theoretical value, PAC does not address practical learning issues on many occasions. This work is inspired by the foundation of PAC and is motivated by the existing regression learning issues. The proposed approach, denoted by epsilon-Confidence Approximately Correct (epsilon CoAC), utilizes Kullback Leibler divergence (relative entropy) and proposes a new related typical set in the set of hyperparameters to tackle the learnability issue. Moreover, it enables the learner to compare hypothesis classes of different complexity orders and choose among them the optimum with the minimum epsilon in the epsilon CoAC framework. Not only the epsilon CoAC learnability overcomes the issues of overfitting and underfitting, but it also shows advantages and superiority over the well known cross-validation method in the sense of time consumption as well as in the sense of accuracy.

Summary

We haven't generated a summary for this paper yet.