Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Soft-prompt tuning to predict lung cancer using primary care free-text Dutch medical notes (2303.15846v1)

Published 28 Mar 2023 in cs.CL, cs.AI, and cs.LG

Abstract: We investigate different NLP approaches based on contextualised word representations for the problem of early prediction of lung cancer using free-text patient medical notes of Dutch primary care physicians. Because lung cancer has a low prevalence in primary care, we also address the problem of classification under highly imbalanced classes. Specifically, we use large Transformer-based pretrained LLMs (PLMs) and investigate: 1) how \textit{soft prompt-tuning} -- an NLP technique used to adapt PLMs using small amounts of training data -- compares to standard model fine-tuning; 2) whether simpler static word embedding models (WEMs) can be more robust compared to PLMs in highly imbalanced settings; and 3) how models fare when trained on notes from a small number of patients. We find that 1) soft-prompt tuning is an efficient alternative to standard model fine-tuning; 2) PLMs show better discrimination but worse calibration compared to simpler static word embedding models as the classification problem becomes more imbalanced; and 3) results when training models on small number of patients are mixed and show no clear differences between PLMs and WEMs. All our code is available open source in \url{https://bitbucket.org/aumc-kik/prompt_tuning_cancer_prediction/}.

Citations (3)

Summary

We haven't generated a summary for this paper yet.