Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few-Shot 3D Point Cloud Semantic Segmentation via Stratified Class-Specific Attention Based Transformer Network (2303.15654v1)

Published 28 Mar 2023 in cs.CV

Abstract: 3D point cloud semantic segmentation aims to group all points into different semantic categories, which benefits important applications such as point cloud scene reconstruction and understanding. Existing supervised point cloud semantic segmentation methods usually require large-scale annotated point clouds for training and cannot handle new categories. While a few-shot learning method was proposed recently to address these two problems, it suffers from high computational complexity caused by graph construction and inability to learn fine-grained relationships among points due to the use of pooling operations. In this paper, we further address these problems by developing a new multi-layer transformer network for few-shot point cloud semantic segmentation. In the proposed network, the query point cloud features are aggregated based on the class-specific support features in different scales. Without using pooling operations, our method makes full use of all pixel-level features from the support samples. By better leveraging the support features for few-shot learning, the proposed method achieves the new state-of-the-art performance, with 15\% less inference time, over existing few-shot 3D point cloud segmentation models on the S3DIS dataset and the ScanNet dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Canyu Zhang (5 papers)
  2. Zhenyao Wu (11 papers)
  3. Xinyi Wu (47 papers)
  4. Ziyu Zhao (28 papers)
  5. Song Wang (313 papers)
Citations (10)