Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bridging the Gap: Applying Assurance Arguments to MIL-HDBK-516C Certification of a Neural Network Control System with ASIF Run Time Assurance Architecture (2303.15568v1)

Published 27 Mar 2023 in eess.SY, cs.SE, and cs.SY

Abstract: Recent advances in artificial intelligence and machine learning may soon yield paradigm-shifting benefits for aerospace systems. However, complexity and possible continued on-line learning makes neural network control systems (NNCS) difficult or impossible to certify under the United States Military Airworthiness Certification Criteria defined in MIL-HDBK-516C. Run time assurance (RTA) is a control system architecture designed to maintain safety properties regardless of whether a primary control system is fully verifiable. This work examines how to satisfy compliance with MIL-HDBK-516C while using active set invariance filtering (ASIF), an advanced form of RTA not envisaged by the 516c committee. ASIF filters the commands from a primary controller, passing on safe commands while optimally modifying unsafe commands to ensure safety with minimal deviation from the desired control action. This work examines leveraging the core theory behind ASIF as assurance argument explaining novel satisfaction of 516C compliance criteria. The result demonstrates how to support compliance of novel technologies with 516C as well as elaborate how such standards might be updated for emerging technologies.

Summary

We haven't generated a summary for this paper yet.