Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Federated Learning on Long-Tailed Data via Adversarial Feature Augmentation (2303.15168v1)

Published 27 Mar 2023 in cs.LG

Abstract: Personalized Federated Learning (PFL) aims to learn personalized models for each client based on the knowledge across all clients in a privacy-preserving manner. Existing PFL methods generally assume that the underlying global data across all clients are uniformly distributed without considering the long-tail distribution. The joint problem of data heterogeneity and long-tail distribution in the FL environment is more challenging and severely affects the performance of personalized models. In this paper, we propose a PFL method called Federated Learning with Adversarial Feature Augmentation (FedAFA) to address this joint problem in PFL. FedAFA optimizes the personalized model for each client by producing a balanced feature set to enhance the local minority classes. The local minority class features are generated by transferring the knowledge from the local majority class features extracted by the global model in an adversarial example learning manner. The experimental results on benchmarks under different settings of data heterogeneity and long-tail distribution demonstrate that FedAFA significantly improves the personalized performance of each client compared with the state-of-the-art PFL algorithm. The code is available at https://github.com/pxqian/FedAFA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yang Lu (157 papers)
  2. Pinxin Qian (1 paper)
  3. Gang Huang (86 papers)
  4. Hanzi Wang (66 papers)
Citations (7)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub