Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Observation of four-top-quark production in the multilepton final state with the ATLAS detector (2303.15061v3)

Published 27 Mar 2023 in hep-ex

Abstract: This paper presents the observation of four-top-quark ($t\bar{t}t\bar{t}$) production in proton-proton collisions at the LHC. The analysis is performed using an integrated luminosity of 140 fb${-1}$ at a centre-of-mass energy of 13 TeV collected using the ATLAS detector. Events containing two leptons with the same electric charge or at least three leptons (electrons or muons) are selected. Event kinematics are used to separate signal from background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The observed (expected) significance of the measured $t\bar{t}t\bar{t}$ signal with respect to the standard model (SM) background-only hypothesis is 6.1 (4.3) standard deviations. The $t\bar{t}t\bar{t}$ production cross section is measured to be $22.5{+6.6}_{-5.5}$ fb, consistent with the SM prediction of $12.0 \pm 2.4$ fb within 1.8 standard deviations. Data are also used to set limits on the three-top-quark production cross section, being an irreducible background not measured previously, and to constrain the top-Higgs Yukawa coupling and effective field theory operator coefficients that affect $t\bar{t}t\bar{t}$ production.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (120)
  1. Hans Peter Nilles “Supersymmetry, supergravity and particle physics” In Phys. Rept. 110, 1984, pp. 1–162 DOI: 10.1016/0370-1573(84)90008-5
  2. Glennys R. Farrar and Pierre Fayet “Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry” In Phys. Lett. B 76, 1978, pp. 575–579 DOI: 10.1016/0370-2693(78)90858-4
  3. Tilman Plehn and Tim M.P. Tait “Seeking sgluons” In J. Phys. G 36, 2009, pp. 075001 DOI: 10.1088/0954-3899/36/7/075001
  4. “Searching for sgluons in multitop events at a center-of-mass energy of 8 TeV” In JHEP 04, 2013, pp. 043 DOI: 10.1007/JHEP04(2013)043
  5. D. Dicus, A. Stange and S. Willenbrock “Higgs decay to top quarks at hadron colliders” In Phys. Lett. B 333, 1994, pp. 126–131 DOI: 10.1016/0370-2693(94)91017-0
  6. “The hunt for the rest of the Higgs bosons” In JHEP 06, 2015, pp. 137 DOI: 10.1007/JHEP06(2015)137
  7. “Heavy Higgs bosons at low tan⁡β𝛽\tan\betaroman_tan italic_β: from the LHC to 100 TeV” In JHEP 01, 2017, pp. 018 DOI: 10.1007/JHEP01(2017)018
  8. “Top quark compositeness: Feasibility and implications” In Phys. Rev. D 78 American Physical Society, 2008, pp. 074026 DOI: 10.1103/PhysRevD.78.074026
  9. Qing-Hong Cao, Shao-Long Chen and Yandong Liu “Probing Higgs width and top quark Yukawa coupling from t⁢t¯⁢H𝑡¯𝑡𝐻t\bar{t}Hitalic_t over¯ start_ARG italic_t end_ARG italic_H and t⁢t¯⁢t⁢t¯𝑡¯𝑡𝑡¯𝑡t\bar{t}t\bar{t}italic_t over¯ start_ARG italic_t end_ARG italic_t over¯ start_ARG italic_t end_ARG productions” In Phys. Rev. D 95.5, 2017, pp. 053004 DOI: 10.1103/PhysRevD.95.053004
  10. “Limiting top quark-Higgs boson interaction and Higgs-boson width from multitop productions” In Phys. Rev. D 99.11, 2019, pp. 113003 DOI: 10.1103/PhysRevD.99.113003
  11. “Non-resonant new physics in top pair production at hadron colliders” In JHEP 03, 2011, pp. 125 DOI: 10.1007/JHEP03(2011)125
  12. Cen Zhang “Constraining q⁢q⁢t⁢t𝑞𝑞𝑡𝑡qqttitalic_q italic_q italic_t italic_t operators from four-top production: a case for enhanced EFT sensitivity” In Chin. Phys. C 42.2, 2018, pp. 023104 DOI: 10.1088/1674-1137/42/2/023104
  13. “The present and future of four top operators” In JHEP 02, 2021, pp. 043 DOI: 10.1007/JHEP02(2021)043
  14. “Complete SMEFT predictions for four top quark production at hadron colliders” In JHEP 10, 2022, pp. 163 DOI: 10.1007/JHEP10(2022)163
  15. “The H^^𝐻\hat{H}over^ start_ARG italic_H end_ARG-parameter: an oblique Higgs view” In JHEP 09, 2019, pp. 041 DOI: 10.1007/JHEP09(2019)041
  16. Rikkert Frederix, Davide Pagani and Marco Zaro “Large NLO corrections in t⁢t¯⁢W±𝑡¯𝑡superscript𝑊plus-or-minust\bar{t}W^{\pm}italic_t over¯ start_ARG italic_t end_ARG italic_W start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT and t⁢t¯⁢t⁢t¯𝑡¯𝑡𝑡¯𝑡t\bar{t}t\bar{t}italic_t over¯ start_ARG italic_t end_ARG italic_t over¯ start_ARG italic_t end_ARG hadroproduction from supposedly subleading EW contributions” In JHEP 02, 2018, pp. 031 DOI: 10.1007/JHEP02(2018)031
  17. “Constraining BSM Physics at the LHC: Four top final states with NLO accuracy in perturbative QCD” In JHEP 07, 2012, pp. 111 DOI: 10.1007/JHEP07(2012)111
  18. “Hadroproduction of four top quarks in the powheg box” In Phys. Rev. D 105.11, 2022, pp. 114024 DOI: 10.1103/PhysRevD.105.114024
  19. ATLAS Collaboration “Evidence for t⁢t¯⁢t⁢t¯𝑡¯𝑡𝑡¯𝑡t\bar{t}t\bar{t}italic_t over¯ start_ARG italic_t end_ARG italic_t over¯ start_ARG italic_t end_ARG production in the multilepton final state in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Eur. Phys. J. C 80, 2020, pp. 1085 DOI: 10.1140/epjc/s10052-020-08509-3
  20. ATLAS Collaboration “Measurement of the tt¯¯𝑡\overline{t}over¯ start_ARG italic_t end_ARGtt¯¯𝑡\overline{t}over¯ start_ARG italic_t end_ARG production cross section in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In JHEP 11, 2021, pp. 118 DOI: 10.1007/JHEP11(2021)118
  21. Melissa Beekveld, Anna Kulesza and Laura Moreno Valero “Threshold resummation for the production of four top quarks at the LHC”, 2022 arXiv:2212.03259 [hep-ph]
  22. CMS Collaboration “Evidence for four-top quark production in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, 2023 arXiv:2303.03864 [hep-ex]
  23. ATLAS Collaboration “The ATLAS Experiment at the CERN Large Hadron Collider” In JINST 3, 2008, pp. S08003 DOI: 10.1088/1748-0221/3/08/S08003
  24. ATLAS Collaboration “ATLAS Insertable B-Layer: Technical Design Report”, 2010 URL: https://cds.cern.ch/record/1291633
  25. B. Abbott “Production and integration of the ATLAS Insertable B-Layer” In JINST 13, 2018, pp. T05008 DOI: 10.1088/1748-0221/13/05/T05008
  26. ATLAS Collaboration “Performance of the ATLAS trigger system in 2015” In Eur. Phys. J. C 77, 2017, pp. 317 DOI: 10.1140/epjc/s10052-017-4852-3
  27. ATLAS Collaboration “The ATLAS Collaboration Software and Firmware”, ATL-SOFT-PUB-2021-001, 2021 URL: https://cds.cern.ch/record/2767187
  28. ATLAS Collaboration “ATLAS data quality operations and performance for 2015–2018 data-taking” In JINST 15, 2020, pp. P04003 DOI: 10.1088/1748-0221/15/04/P04003
  29. “An introduction to PYTHIA 8.2” In Comput. Phys. Commun. 191, 2015, pp. 159 DOI: 10.1016/j.cpc.2015.01.024
  30. ATLAS Collaboration “The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie–Landshoff diffractive model”, ATL-PHYS-PUB-2016-017, 2016 URL: https://cds.cern.ch/record/2206965
  31. Paolo Nason “A new method for combining NLO QCD with shower Monte Carlo algorithms” In JHEP 11, 2004, pp. 040 DOI: 10.1088/1126-6708/2004/11/040
  32. Stefano Frixione, Giovanni Ridolfi and Paolo Nason “A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction” In JHEP 09, 2007, pp. 126 DOI: 10.1088/1126-6708/2007/09/126
  33. Stefano Frixione, Paolo Nason and Carlo Oleari “Matching NLO QCD computations with parton shower simulations: the POWHEG method” In JHEP 11, 2007, pp. 070 DOI: 10.1088/1126-6708/2007/11/070
  34. “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX” In JHEP 06, 2010, pp. 043 DOI: 10.1007/JHEP06(2010)043
  35. “Merging meets matching in MC@NLO” In JHEP 12 Springer ScienceBusiness Media LLC, 2012, pp. 061 DOI: 10.1007/jhep12(2012)061
  36. ATLAS Collaboration “ATLAS Pythia 8 tunes to 7⁢TeV7TeV7\leavevmode\nobreak\ \text{TeV}7 TeV data”, ATL-PHYS-PUB-2014-021, 2014 URL: https://cds.cern.ch/record/1966419
  37. D.J. Lange “The EvtGen particle decay simulation package” In Proceedings, 7th International Conference on B physics at hadron machines (BEAUTY 2000) 462, 2001, pp. 152 DOI: 10.1016/S0168-9002(01)00089-4
  38. “PHOTOS Monte Carlo: a precision tool for QED corrections in Z𝑍Zitalic_Z and W𝑊Witalic_W decays” In Eur. Phys. J. C 45, 2006, pp. 97–107 DOI: 10.1140/epjc/s2005-02396-4
  39. S. Agostinelli “Geant4 – a simulation toolkit” In Nucl. Instrum. Meth. A 506, 2003, pp. 250 DOI: 10.1016/S0168-9002(03)01368-8
  40. ATLAS Collaboration “The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim”, ATL-PHYS-PUB-2010-013, 2010 URL: https://cds.cern.ch/record/1300517
  41. Fabio Cascioli, Philipp Maierhöfer and Stefano Pozzorini “Scattering Amplitudes with Open Loops” In Phys. Rev. Lett. 108, 2012, pp. 111601 DOI: 10.1103/PhysRevLett.108.111601
  42. “Comix, a new matrix element generator” In JHEP 12, 2008, pp. 039 DOI: 10.1088/1126-6708/2008/12/039
  43. “A parton shower algorithm based on Catani–Seymour dipole factorisation” In JHEP 03, 2008, pp. 038 DOI: 10.1088/1126-6708/2008/03/038
  44. “QCD matrix elements + parton showers. The NLO case” In JHEP 04, 2013, pp. 027 DOI: 10.1007/JHEP04(2013)027
  45. “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations” In JHEP 07, 2014, pp. 079 DOI: 10.1007/JHEP07(2014)079
  46. M. Bähr “Herwig++ physics and manual” In Eur. Phys. J. C 58, 2008, pp. 639 DOI: 10.1140/epjc/s10052-008-0798-9
  47. Johannes Bellm “Herwig 7.0/Herwig++ 3.0 release note” In Eur. Phys. J. C 76.4, 2016, pp. 196 DOI: 10.1140/epjc/s10052-016-4018-8
  48. Enrico Bothmann “Event generation with Sherpa 2.2” In SciPost Phys. 7.3, 2019, pp. 034 DOI: 10.21468/SciPostPhys.7.3.034
  49. “FeynRules 2.0 - A complete toolbox for tree-level phenomenology” In Comput. Phys. Commun. 185, 2014, pp. 2250–2300 DOI: 10.1016/j.cpc.2014.04.012
  50. “UFO - The Universal FeynRules Output” In Comput. Phys. Commun. 183, 2012, pp. 1201–1214 DOI: 10.1016/j.cpc.2012.01.022
  51. P. Artoisenet “A framework for Higgs characterisation” In JHEP 11, 2013, pp. 043 DOI: 10.1007/JHEP11(2013)043
  52. “Automated one-loop computations in the SMEFT” In Phys. Rev. D 103.9, 2021, pp. 096024 DOI: 10.1103/physrevd.103.096024
  53. “Event generation with SHERPA 1.1” In JHEP 02, 2009, pp. 007 DOI: 10.1088/1126-6708/2009/02/007
  54. “NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging” In JHEP 04, 2016, pp. 021 DOI: 10.1007/JHEP04(2016)021
  55. Christian Gütschow, Jonas M. Lindert and Marek Schönherr “Multi-jet merged top-pair production including electroweak corrections” In Eur. Phys. J. C 78.4, 2018, pp. 317 DOI: 10.1140/epjc/s10052-018-5804-2
  56. “On improving NLO merging for t⁢t¯⁢Wt¯tW\mathrm{t}\overline{\mathrm{t}}\mathrm{W}roman_t over¯ start_ARG roman_t end_ARG roman_W production” In JHEP 11, 2021, pp. 029 DOI: 10.1007/JHEP11(2021)029
  57. D. Florian “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector”, 2016 DOI: 10.23731/CYRM-2017-002
  58. “Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons” In JHEP 06, 2015, pp. 184 DOI: 10.1007/JHEP06(2015)184
  59. ATLAS Collaboration “Studies on top-quark Monte Carlo modelling for Top2016”, ATL-PHYS-PUB-2016-020, 2016 URL: https://cds.cern.ch/record/2216168
  60. “Top++: A program for the calculation of the top-pair cross-section at hadron colliders” In Comput. Phys. Commun. 185, 2014, pp. 2930 DOI: 10.1016/j.cpc.2014.06.021
  61. Nikolaos Kidonakis “Two-loop soft anomalous dimensions for single top quark associated production with a W−superscript𝑊W^{-}italic_W start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT or H−superscript𝐻H^{-}italic_H start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT” In Phys. Rev. D 82, 2010, pp. 054018 DOI: 10.1103/PhysRevD.82.054018
  62. Nikolaos Kidonakis “Next-to-next-to-leading-logarithm resummation for s-channel single top quark production” In Phys. Rev. D 81, 2010, pp. 054028 DOI: 10.1103/PhysRevD.81.054028
  63. Nikolaos Kidonakis “Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production” In Phys. Rev. D 83, 2011, pp. 091503 DOI: 10.1103/PhysRevD.83.091503
  64. “Single-top hadroproduction in association with a W𝑊Witalic_W boson” In JHEP 07, 2008, pp. 029 DOI: 10.1088/1126-6708/2008/07/029
  65. ATLAS Collaboration “Performance of the ATLAS muon triggers in Run 2” In JINST 15, 2020, pp. P09015 DOI: 10.1088/1748-0221/15/09/p09015
  66. ATLAS Collaboration “Performance of electron and photon triggers in ATLAS during LHC Run 2” In Eur. Phys. J. C 80, 2020, pp. 47 DOI: 10.1140/epjc/s10052-019-7500-2
  67. ATLAS Collaboration “Operation of the ATLAS trigger system in Run 2” In JINST 15, 2020, pp. P10004 DOI: 10.1088/1748-0221/15/10/P10004
  68. ATLAS Collaboration “The ATLAS Inner Detector Trigger performance in p⁢p𝑝𝑝ppitalic_p italic_p collisions at 13⁢TeV13TeV13\,\text{TeV}13 TeV during LHC Run 2” In Eur. Phys. J. C 82, 2021, pp. 206 DOI: 10.1140/epjc/s10052-021-09920-0
  69. ATLAS Collaboration “Vertex Reconstruction Performance of the ATLAS Detector at s=13⁢TeV𝑠13TeV\sqrt{s}=13\leavevmode\nobreak\ \text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV”, ATL-PHYS-PUB-2015-026, 2015 URL: https://cds.cern.ch/record/2037717
  70. ATLAS Collaboration “Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data” In JINST 14, 2019, pp. P12006 DOI: 10.1088/1748-0221/14/12/P12006
  71. ATLAS Collaboration “Muon reconstruction and identification efficiency in ATLAS using the full Run 2 p⁢p𝑝𝑝ppitalic_p italic_p collision data set at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 81.7, 2021, pp. 578 DOI: 10.1140/epjc/s10052-021-09233-2
  72. ATLAS Collaboration “Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector” In Phys. Rev. D 97, 2018, pp. 072003 DOI: 10.1103/PhysRevD.97.072003
  73. ATLAS Collaboration “Jet reconstruction and performance using particle flow with the ATLAS Detector” In Eur. Phys. J. C 77, 2017, pp. 466 DOI: 10.1140/epjc/s10052-017-5031-2
  74. ATLAS Collaboration “Jet energy scale and resolution measured in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Eur. Phys. J. C 81, 2021, pp. 689 DOI: 10.1140/epjc/s10052-021-09402-3
  75. Matteo Cacciari, Gavin P. Salam and Gregory Soyez “The anti-ktsubscript𝑘𝑡k_{t}italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT jet clustering algorithm” In JHEP 04, 2008, pp. 063 DOI: 10.1088/1126-6708/2008/04/063
  76. Matteo Cacciari, Gavin P. Salam and Gregory Soyez “FastJet user manual” In Eur. Phys. J. C 72, 2012, pp. 1896 DOI: 10.1140/epjc/s10052-012-1896-2
  77. ATLAS Collaboration “Tagging and suppression of pileup jets with the ATLAS detector”, ATLAS-CONF-2014-018, 2014 URL: https://cds.cern.ch/record/1700870
  78. ATLAS Collaboration “ATLAS flavour-tagging algorithms for the LHC Run 2 p⁢p𝑝𝑝ppitalic_p italic_p collision dataset”, 2022 DOI: 10.48550/arXiv.2211.16345
  79. ATLAS Collaboration “Optimisation and performance studies of the ATLAS b𝑏bitalic_b-tagging algorithms for the 2017-18 LHC run”, ATL-PHYS-PUB-2017-013, 2017 URL: https://cds.cern.ch/record/2273281
  80. ATLAS Collaboration “Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 78, 2018, pp. 903 DOI: 10.1140/epjc/s10052-018-6288-9
  81. CMS Collaboration “Measurement of the cross section of top quark–antiquark pair production in association with a W𝑊Witalic_W boson in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV”, 2022 arXiv:2208.06485 [hep-ex]
  82. ATLAS Collaboration “Measurement of the t⁢t¯⁢Z𝑡¯𝑡𝑍t\bar{t}Zitalic_t over¯ start_ARG italic_t end_ARG italic_Z and t⁢t¯⁢W𝑡¯𝑡𝑊t\bar{t}Witalic_t over¯ start_ARG italic_t end_ARG italic_W cross sections in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Rev. D 99, 2019, pp. 072009 DOI: 10.1103/PhysRevD.99.072009
  83. S.D. Ellis, R. Kleiss and W.J. Stirling “W’s, Z’s and jets” In Phys. Lett. B 154.5, 1985, pp. 435–440 DOI: https://doi.org/10.1016/0370-2693(85)90425-3
  84. “Multijet production in W, Z events at pp colliders” In Phys. Lett. B 224.1, 1989, pp. 237–242 DOI: https://doi.org/10.1016/0370-2693(89)91081-2
  85. “Top search at fermilab: Multijet signals and backgrounds” In Nucl. Phys. B 343.1, 1990, pp. 14–30 DOI: https://doi.org/10.1016/0550-3213(90)90592-2
  86. “Scaling patterns for QCD jets” In JHEP 10, 2012, pp. 162 DOI: 10.1007/JHEP10(2012)162
  87. “Relational inductive biases, deep learning, and graph networks”, 2018 DOI: 10.48550/ARXIV.1806.01261
  88. Martín Abadi “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems”, 2016 arXiv:1603.04467
  89. “The RooFit toolkit for data modeling”, 2003 arXiv:physics/0306116 [physics.data-an]
  90. ATLAS Collaboration “ATLAS b𝑏bitalic_b-jet identification performance and efficiency measurement with t⁢t¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG events in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 79, 2019, pp. 970 DOI: 10.1140/epjc/s10052-019-7450-8
  91. ATLAS Collaboration “Measurement of the c𝑐citalic_c-jet mistagging efficiency in t⁢t¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG events using p⁢p𝑝𝑝ppitalic_p italic_p collision data at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV collected with the ATLAS detector” In Eur. Phys. J. C 82, 2021, pp. 95 DOI: 10.1140/epjc/s10052-021-09843-w
  92. ATLAS Collaboration “Calibration of the light-flavour jet mistagging efficiency of the b𝑏bitalic_b-tagging algorithms with Z𝑍Zitalic_Z+jets events using 139 fb−1superscriptfb1\mathrm{fb}^{-1}roman_fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of ATLAS proton-proton collision data at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, 2023 arXiv:2301.06319 [hep-ex]
  93. ATLAS Collaboration “Jet energy scale and resolution measured in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Eur. Phys. J. C 81, 2020, pp. 689 DOI: 10.1140/epjc/s10052-021-09402-3
  94. ATLAS Collaboration “Jet energy measurement with the ATLAS detector in proton–proton collisions at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV” In Eur. Phys. J. C 73, 2013, pp. 2304 DOI: 10.1140/epjc/s10052-013-2304-2
  95. ATLAS Collaboration “Jet energy resolution in proton–proton collisions at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV recorded in 2010 with the ATLAS detector” In Eur. Phys. J. C 73, 2013, pp. 2306 DOI: 10.1140/epjc/s10052-013-2306-0
  96. ATLAS Collaboration “Performance of pile-up mitigation techniques for jets in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=8⁢TeV𝑠8TeV\sqrt{s}=8\,\text{TeV}square-root start_ARG italic_s end_ARG = 8 TeV using the ATLAS detector” In Eur. Phys. J. C 76, 2016, pp. 581 DOI: 10.1140/epjc/s10052-016-4395-z
  97. ATLAS Collaboration “Luminosity determination in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV using the ATLAS detector at the LHC”, 2022 arXiv:2212.09379 [hep-ex]
  98. G. Avoni “The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS” In JINST 13.07, 2018, pp. P07017 DOI: 10.1088/1748-0221/13/07/P07017
  99. Jon Butterworth “PDF4LHC recommendations for LHC Run II” In J. Phys. G 43, 2016, pp. 023001 DOI: 10.1088/0954-3899/43/2/023001
  100. ATLAS Collaboration “Measurement of the production cross-section of a single top quark in association with a Z𝑍Zitalic_Z boson in proton–proton collisions at 13⁢TeV13TeV13\,\text{TeV}13 TeV with the ATLAS detector” In Phys. Lett. B 780, 2018, pp. 557 DOI: 10.1016/j.physletb.2018.03.023
  101. Hesham El Faham “t⁢W⁢Z𝑡𝑊𝑍tWZitalic_t italic_W italic_Z production at NLO in QCD in the SMEFT” In 14th International Workshop on Top Quark Physics, 2021 arXiv:2112.13282 [hep-ph]
  102. Olga Bessidskaia Bylund “Modelling Wt and tWZ production at NLO for ATLAS analyses” In 9th International Workshop on Top Quark Physics, 2016 arXiv:1612.00440 [hep-ph]
  103. ATLAS Collaboration “Measurement of W±⁢Zsuperscript𝑊plus-or-minus𝑍W^{\pm}Zitalic_W start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT italic_Z production cross sections and gauge boson polarisation in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Eur. Phys. J. C 79, 2019, pp. 535 DOI: 10.1140/epjc/s10052-019-7027-6
  104. ATLAS Collaboration “Search for new phenomena in events with same-charge leptons and b𝑏bitalic_b-jets in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In JHEP 12, 2018, pp. 039 DOI: 10.1007/JHEP12(2018)039
  105. ATLAS Collaboration “Measurements of inclusive and differential fiducial cross-sections of t⁢t¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG production with additional heavy-flavour jets in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In JHEP 04, 2019, pp. 046 DOI: 10.1007/JHEP04(2019)046
  106. “Asymptotic formulae for likelihood-based tests of new physics” In Eur. Phys. J. C 71, 2011, pp. 1554 DOI: 10.1140/epjc/s10052-011-1554-0
  107. Steve Baker and Robert D. Cousins “Clarification of the Use of Chi Square and Likelihood Functions in Fits to Histograms” In Nucl. Instrum. Meth. 221, 1984, pp. 437–442 DOI: 10.1016/0167-5087(84)90016-4
  108. Robert D. Cousins “Generalization of Chisquare Goodness-of Fit Test for Binned Data Using Saturated Models, with Application to Histograms”, 2013 URL: https://www.physics.ucla.edu/~cousins/stats/cousins_saturated.pdf
  109. Vernon Barger, Wai-Yee Keung and Brian Yencho “Triple-top signal of new physics at the LHC” In Phys. Lett. B 687, 2010, pp. 70 DOI: 10.1016/j.physletb.2010.03.001
  110. Chuan-Ren Chen “Searching for new physics with triple-top signal at the LHC” In Phys. Lett. B 736, 2014, pp. 321 DOI: 10.1016/j.physletb.2014.07.041
  111. “Triple top quark production in standard model” In Int. J. Mod. Phys. A 37.05, 2022, pp. 2250023 DOI: 10.1142/S0217751X22500233
  112. “What can we learn from triple top-quark production?” In Phys. Rev. D 100.5, 2019, pp. 055035 DOI: 10.1103/PhysRevD.100.055035
  113. Hamzeh Khanpour “Probing top quark FCNC couplings in the triple-top signal at the high energy LHC and future circular collider” In Nucl. Phys. B 958, 2020, pp. 115141 DOI: 10.1016/j.nuclphysb.2020.115141
  114. ATLAS Collaboration “C⁢P𝐶𝑃CPitalic_C italic_P Properties of Higgs Boson Interactions with Top Quarks in the t⁢t¯⁢H𝑡¯𝑡𝐻t\bar{t}Hitalic_t over¯ start_ARG italic_t end_ARG italic_H and t⁢H𝑡𝐻tHitalic_t italic_H Processes Using H→γ⁢γ→𝐻𝛾𝛾H\to\gamma\gammaitalic_H → italic_γ italic_γ with the ATLAS Detector” In Phys. Rev. Lett. 125, 2020, pp. 061802 DOI: 10.1103/PhysRevLett.125.061802
  115. CMS Collaboration “Search for production of four top quarks in final states with same-sign or multiple leptons in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 80, 2020, pp. 75 DOI: 10.1140/epjc/s10052-019-7593-7
  116. CMS Collaboration “Search for the production of four top quarks in the single-lepton and opposite-sign dilepton final states in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In JHEP 11, 2019, pp. 082 DOI: 10.1007/JHEP11(2019)082
  117. ATLAS Collaboration “Combined measurements of Higgs boson production and decay using up to 80⁢fb−180superscriptfb180\,\text{fb}^{-1}80 fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of proton–proton collision data at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV collected with the ATLAS experiment” In Phys. Rev. D 101, 2020, pp. 012002 DOI: 10.1103/PhysRevD.101.012002
  118. ATLAS Collaboration “ATLAS Computing Acknowledgements”, ATL-SOFT-PUB-2021-003, 2021 URL: https://cds.cern.ch/record/2776662
  119. ATLAS Collaboration, 2012 URL: https://cds.cern.ch/record/1451888
  120. In Eur. Phys. J. C 73, 2013, pp. 2501 DOI: 10.1140/epjc/s10052-013-2501-z
Citations (52)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com