Hidden Sp(1)-Symmetry and Brane Quantization on HyperKähler manifolds (2303.14992v1)
Abstract: For a fixed prequantum line bundle $L$ over a hyperK\"ahler manifold $X$, we find a natural $\operatorname{Sp}(1)$-action on $\Omega*(X, L)$ intertwining a twistor family of $\operatorname{Spin}{\operatorname{c}}$-Dirac Laplacians on the spaces of $L$-valued $(0, *)$-forms on $X$, noting that $L$ is holomorphic for only one complex structure in the twistor family. This establishes a geometric quantization of $X$ via Gukov-Witten brane quantization and leads to a proposal of a mathematical definition of $\operatorname{Hom}(\overline{\mathcal{B}}{\operatorname{cc}}, \mathcal{B}{\operatorname{cc}})$ for the canonical coisotropic A-brane $\mathcal{B}{\operatorname{cc}}$ on $X$ and its conjugate brane $\overline{\mathcal{B}}{\operatorname{cc}}$.