Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BoxVIS: Video Instance Segmentation with Box Annotations (2303.14618v2)

Published 26 Mar 2023 in cs.CV and eess.IV

Abstract: It is expensive and labour-extensive to label the pixel-wise object masks in a video. As a result, the amount of pixel-wise annotations in existing video instance segmentation (VIS) datasets is small, limiting the generalization capability of trained VIS models. An alternative but much cheaper solution is to use bounding boxes to label instances in videos. Inspired by the recent success of box-supervised image instance segmentation, we adapt the state-of-the-art pixel-supervised VIS models to a box-supervised VIS (BoxVIS) baseline, and observe slight performance degradation. We consequently propose to improve the BoxVIS performance from two aspects. First, we propose a box-center guided spatial-temporal pairwise affinity (STPA) loss to predict instance masks for better spatial and temporal consistency. Second, we collect a larger scale box-annotated VIS dataset (BVISD) by consolidating the videos from current VIS benchmarks and converting images from the COCO dataset to short pseudo video clips. With the proposed BVISD and the STPA loss, our trained BoxVIS model achieves 43.2\% and 29.0\% mask AP on the YouTube-VIS 2021 and OVIS valid sets, respectively. It exhibits comparable instance mask prediction performance and better generalization ability than state-of-the-art pixel-supervised VIS models by using only 16\% of their annotation time and cost. Codes and data can be found at \url{https://github.com/MinghanLi/BoxVIS}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Minghan Li (38 papers)
  2. Lei Zhang (1689 papers)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com