Observational constrained $F(R, \mathcal{G})$ gravity cosmological model and the dynamical system analysis (2303.14575v2)
Abstract: In this paper, we have analyzed the geometrical and dynamical parameters of $\mathcal{F}(R, \mathcal{G})=\alpha R2 \mathcal{G}\beta$ cosmological model, ($R$, $\mathcal{G}$ being the Ricci scalar and Gauss-Bonnet invariant respectively), constraining the parameters through the cosmological data sets. It is exhibited that the model admits a viable radiation era, and early deceleration followed by late-time acceleration in the matter-dominated era. From the phase-space, portrait stability criterion has been analysed, restricting the parameter $\beta$, different from $\beta=-1$. Additionally, we have explored the stability of the model from the behavior of critical points and obtained the present value of the density parameter for matter-dominated and dark energy components, which are identical to those obtained through cosmological data sets.
- S. F. Daniel, R. R. Caldwell, A. Cooray, and A. Melchiorri, “Large scale structure as a probe of gravitational slip,” Phys. Rev. D 77 (2008) no. 12, 103513.
- S. Capozziello and M. De Laurentis, “Extended Theories of Gravity,” Phys. Rept. 509 (2011) 167–321, arXiv:1108.6266 [gr-qc].
- S. C. V. Faraoni, “Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics,” Fundam. Theor. Phys. 170 (2010) no. 1, 428.
- S. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: from F(R)𝐹𝑅F(R)italic_F ( italic_R ) theory to Lorentz non-invariant models,” Phys. Rep. 505 (2011) no. 2-4, 59–144, arXiv:1011.0544 [gr-qc].
- S. Nojiri and S. D. Odintsov, “Introduction to Modified Gravity and Gravitational Alternative for Dark Energy,” Int. J. Geom. Meth. Mod. Phys. 04 (2007) no. 01, 115–145.
- S. Nojiri, S. Odintsov, and V. Oikonomou, “Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution,” Phys. Rep. 692 (2017) 1–104.
- A. Starobinsky, “A new type of isotropic cosmological models without singularity,” Phys. Lett. B 91 (1980) no. 1, 99–102.
- I. de Martino, M. De Laurentis, and S. Capozziello, “Tracing the cosmic history by Gauss-Bonnet gravity,” Phys. Rev. D 102 (2020) no. 16, 063508.
- S. Odintsov, V. Oikonomou, and S. Banerjee, “Dynamics of inflation and dark energy from F(R,𝒢)𝐹𝑅𝒢F(R,\mathcal{G})italic_F ( italic_R , caligraphic_G ) gravity,” Nuclear Phys. B 938 (2019) 935–956.
- E. Elizalde, R. Myrzakulov, V. V. Obukhov, and D. Sáez-Gómez, “ΛΛ\Lambdaroman_ΛCDM epoch reconstruction from F(R,G)𝐹𝑅𝐺F(R,G)italic_F ( italic_R , italic_G ) and modified Gauss-Bonnet gravities,” Classical and Quantum Gravity 27 (2010) 095007.
- B. Li, J. D. Barrow, and D. F. Mota, “Cosmology of modified Gauss-Bonnet gravity,” Phys. Rev. D 76 (2007) no. 9, 044027.
- J. M. Lattimer and A. W. Steiner, “Neutron Star Masses and Radii from Quiescent Low-Mass X-ray Binaries,” Astrophys. J. 784 (2014) no. 2, 123.
- A. D. Felice and S. Tsujikawa, “Construction of cosmologically viable gravity models,” Phys. Lett. B 675 (2009) no. 1, 1–8.
- S. Nojiri and S. D. Odintsov, “Modified Gauss-Bonnet theory as gravitational alternative for dark energy,” Phys. Lett. B 631 (2005) no. 1-2, 1–6, arXiv:hep-th/0508049.
- M. De Laurentis, M. Paolella, and S. Capozziello, “Cosmological inflation in F(R,𝒢)𝐹𝑅𝒢F(R,\mathcal{G})italic_F ( italic_R , caligraphic_G ) gravity,” Phys. Rev. D 91 (2015) no. 9, 083531.
- S. Capozziello, M. De Laurentis, and S. D. Odintsov, “Noether symmetry approach in Gauss-Bonnet Cosmology,” Mod. Phys. Lett. A 29 (2014) no. 30, 1450164.
- K. F. Dialektopoulos, J. L. Said, and Z. Oikonomopoulou, “Dynamical systems in Einstein-Gauss-Bonnet gravity,” arXiv (2022) 2211.06076.
- N. Chatzarakis and V. Oikonomou, “Autonomous dynamical system of Einstein-Gauss-Bonnet cosmologies,” Annals of Physics 419 (2020) 168216.
- P. Shah and G. C. Samanta, “Stability analysis for cosmological models in f(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity using dynamical system analysis,” Eur. Phy. J. C 79 (2019) 414.
- P. Bessa, M. Campista, and A. Bernui, “Observational constraints on Starobinsky f(R)𝑓𝑅f(R)italic_f ( italic_R ) cosmology from cosmic expansion and structure growth data,” Eur. Phy. J. C 82 (2022) 506.
- B. Bayarsaikhan, S. Khimphun, P. Rithy, and G. Tumurtushaa, “Dynamical analysis in regularized 4D Einstein-Gauss-Bonnet gravity with non-minimak coupling,” Eur. Phy. J. C 83 (2023) 238.
- B. Wu and B.-Q. Ma, “Spherically symmetric solution of F(R,𝒢)𝐹𝑅𝒢F(R,\mathcal{G})italic_F ( italic_R , caligraphic_G ) gravity at low energy,” Phys. Rev. D 92 (2015) no. 17, 044012.
- A. K. Sanyal and C. Sarkar, “The role of cosmological constant in F(R,𝒢)𝐹𝑅𝒢F(R,\mathcal{G})italic_F ( italic_R , caligraphic_G ) gravity,” Classical and Quantum Gravity 37 (2020) no. 5, 055010.
- M. Calzá, A. Casalino, O. Luongo, and L. Sebastiani, “Kinematic reconstructions of extended theories of gravity at small and intermediate redshifts,” Eur. Phy. J. P 135 (2020) no. 1, .
- A. Dolgov and M. Kawasaki, “Can modified gravity explain accelerated cosmic expansion?,” Phys. Lett. B 573 (2003) 1–4.
- C. Gruber and O. Luongo, “Cosmographic analysis of the equation of state of the universe through Padé approximations,” Phys. Rev. D 89 (2014) no. 19, 103506.
- Y. Yang and Y. Gong, “The evidence of cosmic acceleration and observational constraints,” J. Cosmol. Astropart. Phys. 2020 (2020) no. 06, 059.
- S. Capozziello, P. Martin-Moruno, and C. Rubano, “Dark energy and dust matter phases from an exact f(R)𝑓𝑅f(R)italic_f ( italic_R )-cosmology model,” Phys. Lett. B 664 (2008) 12–15.
- O. Farooq and B. Ratra, “Hubble parameter measurement constraints on the cosmological deceleration-acceleration transition redshift,” Astrophys. J. Lett. 766 (2013) no. 1, L7.
- G. J. Olmo, “Post-Newtonian constraints on f(R)𝑓𝑅f(R)italic_f ( italic_R ) cosmologies in metric and Palatini formalism,” Phys. Rev. D 72 (2005) no. 17, 083505.
- J. B. Dent, S. Dutta, and E. N. Saridakis, “f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity mimicking dynamical dark energy. Background and perturbation analysis,” J. Cosmol. Astropart. Phys. 2011 (2011) no. 01, 009–009, arXiv:1010.2215 [astro-ph.CO].
- M. M. Ivanov and A. V. Toporensky, “Cosmological dynamics of fourth-order gravity with a Gauss-Bonnet term,” Gravitation and Cosmology 18 (2012) 43–53.
- B. Mirza and F. Oboudiat, “Constraining f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity by dynamical system analysis,” J. Cosmol. Astropart. Phys. 2017 (2017) no. 11, 011–011, arXiv::1704.02593 [gr-qc].
- S. Bahamonde, M. Marciu, and P. Rudra, “Dynamical system analysis of generalized energy - momentum - squared gravity,” Phys. Rev. D 100 (2019) no. 14, 083511.
- S. A. Kadam, B. Mishra, and J. Said Levi, “Teleparallel scalar-tensor gravity through cosmological dynamical systems,” Eur. Phys. J. C 82 (2022) no. 8, 680, arXiv:2205.04231 [gr-qc].
- S. D. Odintsov and V. K. Oikonomou, “Dynamical systems perspective of cosmological finite-time singularities in f(R)𝑓𝑅f\mathbf{(}R\mathbf{)}italic_f ( italic_R ) gravity and interacting multifluid cosmology,” Phys. Rev. D 98 (2018) no. 25, 024013.
- S. D. Odintsov and V. K. Oikonomou, “Effects of spatial curvature on the f(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity phase space: no inflationary attractor?,” Classical and Quantum Gravity 36 (2019) no. 6, 065008.
- S. D. Odintsov and V. K. Oikonomou, “Autonomous dynamical system approach for f(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity,” Phys. Rev. D 96 (2017) no. 16, 104049.
- J. Simon, L. Verde, and R. Jimenez, “Constraints on the redshift dependence of the dark energy potential,” Phys. Rev. D 71 (2005) no. 18, 123001.
- M. Moresco, “Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z ∼similar-to\sim∼ 2,” Mon. Not. Roy. Astron. Soc.: Lett. 450 (2015) no. 1, L16–L20.
- N. Borghi, M. Moresco, and A. Cimatti, “Toward a Better Understanding of Cosmic Chronometers: A New Measurement of H(z)𝐻𝑧H(z)italic_H ( italic_z ) at z ∼similar-to\sim∼ 0.7,” Astrophys. J. Lett. 928 (2022) no. 1, L4.