Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fairness meets Cross-Domain Learning: a new perspective on Models and Metrics (2303.14411v1)

Published 25 Mar 2023 in cs.CV and cs.AI

Abstract: Deep learning-based recognition systems are deployed at scale for several real-world applications that inevitably involve our social life. Although being of great support when making complex decisions, they might capture spurious data correlations and leverage sensitive attributes (e.g. age, gender, ethnicity). How to factor out this information while keeping a high prediction performance is a task with still several open questions, many of which are shared with those of the domain adaptation and generalization literature which focuses on avoiding visual domain biases. In this work, we propose an in-depth study of the relationship between cross-domain learning (CD) and model fairness by introducing a benchmark on face and medical images spanning several demographic groups as well as classification and localization tasks. After having highlighted the limits of the current evaluation metrics, we introduce a new Harmonic Fairness (HF) score to assess jointly how fair and accurate every model is with respect to a reference baseline. Our study covers 14 CD approaches alongside three state-of-the-art fairness algorithms and shows how the former can outperform the latter. Overall, our work paves the way for a more systematic analysis of fairness problems in computer vision. Code available at: https://github.com/iurada/fairness_crossdomain

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Leonardo Iurada (4 papers)
  2. Silvia Bucci (18 papers)
  3. Timothy M. Hospedales (69 papers)
  4. Tatiana Tommasi (50 papers)

Summary

We haven't generated a summary for this paper yet.