Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Genericity of Lyapunov spectrum of bounded random compact operators on infinite-dimensional Hilbert spaces (2303.14359v1)

Published 25 Mar 2023 in math.DS

Abstract: This paper is devoted to study stability of Lyapunov exponents and simplicity of Lyapunov spectrum for bounded random compact operators on a separable infinite-dimensional Hilbert space from a generic point of view generated by the essential supremum norm. Firstly, we show the density of both the set of bounded random compact operators having finite number Lyapunov exponents and the set of bounded random compact operators having countably infinite number Lyapunov exponents. Meanwhile, the set of bounded random compact operators having no Lyapunov exponent is nowhere dense. Finally, for any $k\in\N$ we show that the set of bounded random compact operators satisfying that the Lyapunov spectral corresponding to their first $k$ Lyapunov exponents are simple and continuous contains an open and dense set.

Summary

We haven't generated a summary for this paper yet.