Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Task Reinforcement Learning in Continuous Control with Successor Feature-Based Concurrent Composition (2303.13935v2)

Published 24 Mar 2023 in cs.RO

Abstract: Deep reinforcement learning (DRL) frameworks are increasingly used to solve high-dimensional continuous control tasks in robotics. However, due to the lack of sample efficiency, applying DRL for online learning is still practically infeasible in the robotics domain. One reason is that DRL agents do not leverage the solution of previous tasks for new tasks. Recent work on multi-task DRL agents based on successor features (SFs) has proven to be quite promising in increasing sample efficiency. In this work, we present a new approach that unifies two prior multi-task RL frameworks, SF-GPI and value composition, and adapts them to the continuous control domain. We exploit compositional properties of successor features to compose a policy distribution from a set of primitives without training any new policy. Lastly, to demonstrate the multi-tasking mechanism, we present our proof-of-concept benchmark environments, Pointmass and Pointer, based on IsaacGym, which facilitates large-scale parallelization to accelerate the experiments. Our experimental results show that our multi-task agent has single-task performance on par with soft actor-critic (SAC), and the agent can successfully transfer to new unseen tasks. We provide our code as open-source at "https://github.com/robot-perception-group/concurrent_composition" for the benefit of the community.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yu Tang Liu (8 papers)
  2. Aamir Ahmad (28 papers)
Citations (4)
Youtube Logo Streamline Icon: https://streamlinehq.com