Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Robustness and Feature Impact Analysis for Driver Drowsiness Detection (2303.13649v1)

Published 23 Mar 2023 in cs.LG, cs.SY, and eess.SY

Abstract: Drowsy driving is a major cause of road accidents, but drivers are dismissive of the impact that fatigue can have on their reaction times. To detect drowsiness before any impairment occurs, a promising strategy is using Machine Learning (ML) to monitor Heart Rate Variability (HRV) signals. This work presents multiple experiments with different HRV time windows and ML models, a feature impact analysis using Shapley Additive Explanations (SHAP), and an adversarial robustness analysis to assess their reliability when processing faulty input data and perturbed HRV signals. The most reliable model was Extreme Gradient Boosting (XGB) and the optimal time window had between 120 and 150 seconds. Furthermore, SHAP enabled the selection of the 18 most impactful features and the training of new smaller models that achieved a performance as good as the initial ones. Despite the susceptibility of all models to adversarial attacks, adversarial training enabled them to preserve significantly higher results, especially XGB. Therefore, ML models can significantly benefit from realistic adversarial training to provide a more robust driver drowsiness detection.

Summary

We haven't generated a summary for this paper yet.