Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning unidirectional coupling using echo-state network (2303.13562v1)

Published 23 Mar 2023 in cs.LG

Abstract: Reservoir Computing has found many potential applications in the field of complex dynamics. In this article, we exploit the exceptional capability of the echo-state network (ESN) model to make it learn a unidirectional coupling scheme from only a few time series data of the system. We show that, once trained with a few example dynamics of a drive-response system, the machine is able to predict the response system's dynamics for any driver signal with the same coupling. Only a few time series data of an $A-B$ type drive-response system in training is sufficient for the ESN to learn the coupling scheme. After training even if we replace drive system $A$ with a different system $C$, the ESN can reproduce the dynamics of response system $B$ using the dynamics of new drive system $C$ only.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. J. Meiyazhagan, S. Sudharsan, and M. Senthilvelan, Model-free prediction of emergence of extreme events in a parametrically driven nonlinear dynamical system by deep learning, The European Physical Journal B 94, 1 (2021).
  2. C. Gallicchio and A. Micheli, Echo state property of deep reservoir computing networks, Cognitive Computation 9, 337 (2017).
  3. K. Nakajima, Physical reservoir computing—an introductory perspective, Japanese Journal of Applied Physics 59, 060501 (2020).
  4. H. Jaeger, The “echo state” approach to analysing and training recurrent neural networks-with an erratum note, Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148, 13 (2001).
  5. W. Maass, T. Natschläger, and H. Markram, Real-time computing without stable states: A new framework for neural computation based on perturbations, Neural computation 14, 2531 (2002).
  6. M. Lukoševičius and H. Jaeger, Reservoir computing approaches to recurrent neural network training, Computer Science Review 3, 127 (2009).
  7. M. Lukoševičius, H. Jaeger, and B. Schrauwen, Reservoir computing trends, KI-Künstliche Intelligenz 26, 365 (2012).
  8. Z. Lu, B. R. Hunt, and E. Ott, Attractor reconstruction by machine learning, Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 061104 (2018).
  9. A. Röhm, D. J. Gauthier, and I. Fischer, Model-free inference of unseen attractors: Reconstructing phase space features from a single noisy trajectory using reservoir computing, Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 103127 (2021).
  10. J. C. Coulombe, M. C. York, and J. Sylvestre, Computing with networks of nonlinear mechanical oscillators, PloS one 12, e0178663 (2017).
  11. J. Choi and P. Kim, Critical neuromorphic computing based on explosive synchronization, Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 043110 (2019).
  12. S. Mandal and M. D. Shrimali, Achieving criticality for reservoir computing using environment-induced explosive death, Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 031101 (2021).
  13. J. Jensen and G. Tufte, Reservoir computing with a chaotic circuit, in Proceedings of the European Conference on Artificial Life 2017 (MIT Press, 2017).
  14. S. Mandal, S. Sinha, and M. D. Shrimali, Machine-learning potential of a single pendulum, Physical Review E 105, 054203 (2022).
  15. D. G. Aronson, G. B. Ermentrout, and N. Kopell, Amplitude response of coupled oscillators, Physica D: Nonlinear Phenomena 41, 403 (1990).
  16. K. Bar-Eli, On the stability of coupled chemical oscillators, Physica D: Nonlinear Phenomena 14, 242 (1985).
  17. S. H. Strogatz and I. Stewart, Coupled oscillators and biological synchronization, Scientific American 269, 102 (1993).
  18. E. Steur, I. Tyukin, and H. Nijmeijer, Semi-passivity and synchronization of diffusively coupled neuronal oscillators, Physica D: Nonlinear Phenomena 238, 2119 (2009).
  19. A. Sharma and M. D. Shrimali, Amplitude death with mean-field diffusion, Physical Review E 85, 057204 (2012).
  20. D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Physical review letters 93, 174102 (2004).
  21. S. Kim, S. H. Park, and C. Ryu, Multistability in coupled oscillator systems with time delay, Physical review letters 79, 2911 (1997).
  22. L. M. Pecora and T. L. Carroll, Driving systems with chaotic signals, Physical review A 44, 2374 (1991).
  23. A. Uchida, R. McAllister, and R. Roy, Consistency of nonlinear system response to complex drive signals, Physical review letters 93, 244102 (2004).
  24. M. Agrawal, A. Prasad, and R. Ramaswamy, Driving-induced bistability in coupled chaotic attractors, Physical Review E 87, 042909 (2013).
  25. L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Physical review letters 64, 821 (1990).
  26. C. Tresser, P. A. Worfolk, and H. Bass, Master-slave synchronization from the point of view of global dynamics, Chaos: An Interdisciplinary Journal of Nonlinear Science 5, 693 (1995).
  27. J. Mei, M. Jiang, and J. Wang, Finite-time structure identification and synchronization of drive-response systems with uncertain parameter, Communications in Nonlinear Science and Numerical Simulation 18, 999 (2013).
  28. K.-Z. Li, M.-C. Zhao, and X.-C. Fu, Projective synchronization of driving–response systems and its application to secure communication, IEEE Transactions on Circuits and Systems I: Regular Papers 56, 2280 (2009).
  29. A. E. Botha and M. R. Kolahchi, Analysis of chimera states as drive-response systems, Scientific Reports 8, 1 (2018).
  30. R. Q. Quiroga, J. Arnhold, and P. Grassberger, Learning driver-response relationships from synchronization patterns, Physical Review E 61, 5142 (2000).
  31. J. Yperman and T. Becker, Bayesian optimization of hyper-parameters in reservoir computing, arXiv preprint arXiv:1611.05193  (2016).
  32. A. Griffith, A. Pomerance, and D. J. Gauthier, Forecasting chaotic systems with very low connectivity reservoir computers, Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 123108 (2019).
Citations (5)

Summary

We haven't generated a summary for this paper yet.