Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LearnedFTL: A Learning-Based Page-Level FTL for Reducing Double Reads in Flash-Based SSDs (2303.13226v2)

Published 23 Mar 2023 in cs.AR and cs.OS

Abstract: We present LearnedFTL, a new on-demand page-level flash translation layer (FTL) design, which employs learned indexes to improve the address translation efficiency of flash-based SSDs. The first of its kind, it reduces the number of double reads induced by address translation in random read accesses. LearnedFTL proposes three key techniques: an in-place-update linear model to build learned indexes efficiently, a virtual PPN representation to obtain contiguous PPNs for sorted LPNs, and a group-based allocation and model training via GC/rewrite strategy to reduce the training overhead. By tightly integrating the aforementioned key techniques, LearnedFTL considerably speeds up address translation while reducing the number of flash read accesses caused by the address translation. Our extensive experiments on a FEMU-based prototype show that LearnedFTL can reduce up to 55.5\% address translation-induced double reads. As a result, LearnedFTL reduces the P99 tail latency by 2.9$\times$ $\sim$ 12.2$\times$ with an average of 5.5$\times$ and 8.2$\times$ compared to the state-of-the-art TPFTL and LeaFTL schemes, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to Flash Memory,” Proceedings of the IEEE, vol. 91, no. 4, pp. 489–502, 2003.
  2. M. Bjørling, A. Aghayev, H. Holmberg, A. Ramesh, D. Le Moal, G. R. Ganger, and G. Amvrosiadis, “ZNS: Avoiding the Block Interface Tax for Flash-based SSDs,” in Proceedings of the USENIX Annual Technical Conference (USENIX ATC’21), 2021, pp. 689–703.
  3. Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data retention in MLC NAND flash memory: Characterization, optimization, and recovery,” in Proceedings of the 21st International Symposium on High Performance Computer Architecture (HPCA’15), 2015, pp. 551–563.
  4. S.-J. Chae, R. Mativenga, J.-Y. Paik, M. Attique, and T.-S. Chung, “DSFTL: An Efficient FTL for Flash Memory based Storage Systems,” Electronics, vol. 9, no. 1, p. 145, 2020.
  5. H. Chen, C. Li, Y. Pan, M. Lyu, Y. Li, and Y. Xu, “HCFTL: A Locality-aware Page-level Flash Translation Layer,” in Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE’19), 2019, pp. 590–593.
  6. J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang, B. Chandramouli, J. Gehrke, D. Kossmann, and D. Lomet, “ALEX: An Updatable Adaptive Learned Index,” in Proceedings of the 2020 ACM International Conference on Management of Data (SIGMOD’20), 2020, pp. 969–984.
  7. J. Ding, V. Nathan, M. Alizadeh, and T. Kraska, “Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed Workloads,” Proceedings of the VLDB Endowment, vol. 14, no. 2, pp. 74–86, 2020.
  8. P. Ferragina and G. Vinciguerra, “The PGM-Index: a Fully-dynamic Compressed Learned Index with Provable Worst-case Bounds,” Proceedings of the VLDB Endowment, vol. 13, no. 8, pp. 1162–1175, 2020.
  9. A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a Flash Translation Layer Employing Demand-Based Selective Caching of Page-Level Address Mappings,” in Proceedings of the 14th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’09), 2009, pp. 229–240.
  10. S. Gupta, Y. Oh, L. Yan, M. Sutherland, A. Bhattacharjee, B. Falsafi, and P. Hsu, “AstriFlash: A Flash-Based System for Online Services,” in Proceedings of the 29th International Symposium on High Performance Computer Architecture (HPCA’23), 2023, pp. 81–93.
  11. K. Han, H. Gwak, D. Shin, and J. Hwang, “ZNS+: Advanced Zoned Namespace Interface for Supporting In-storage Zone Compaction,” in Proceedings of the 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI’21), 2021, pp. 147–162.
  12. Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Performance Impact and Interplay of SSD Parallelism through Advanced Commands, Allocation Strategy and Data Granularity,” in Proceedings of the 25th International Conference on Supercomputing (ICS’11), 2011, pp. 96–107.
  13. M. Jung, W. Choi, S. Gao, E. H. Wilson III, D. Donofrio, J. Shalf, and M. T. Kandemir, “Nandflashsim: High-fidelity, microarchitecture-aware nand flash memory simulation,” ACM Transactions on Storage (TOS), vol. 12, no. 2, pp. 1–32, 2016.
  14. J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A superblock-based flash translation layer for NAND flash memory,” in Proceedings of the 6th ACM & IEEE International conference on Embedded Software (EMSOFT’06), 2006, pp. 161–170.
  15. S. Kannan, N. Bhat, A. Gavrilovska, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Redesigning LSMs for Nonvolatile Memory with NoveLSM,” in Proceedings of the USENIX Annual Technical Conference (USENIX ATC’18), 2018, pp. 993–1005.
  16. Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “Flashsim: A Simulator for NAND flash-based Solid-State Drives,” in Proceedings of the 1st International Conference on Advances in System Simulation (SIMUL’09), 2009, pp. 125–131.
  17. C. Lee, T. Kumano, T. Matsuki, H. Endo, N. Fukumoto, and M. Sugawara, “Understanding Storage Traffic Characteristics on Enterprise Virtual Desktop Infrastructure,” in Proceedings of the 10th ACM International Systems and Storage Conference (Systor’17), 2017, pp. 1–11.
  18. S.-W. Lee, W.-K. Choi, and D.-J. Park, “FAST: An Efficient Flash Translation Layer for Flash Memory,” in Proceedings of the International Conference on Embedded and Ubiquitous Computing (EUC’06), 2006, pp. 879–887.
  19. S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: Locality-Aware Sector Translation for NAND Flash Memory-based Storage Systems,” ACM SIGOPS Operating Systems Review, vol. 42, no. 6, pp. 36–42, 2008.
  20. H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling, and H. S. Gunawi, “The CASE of FEMU: Cheap, Accurate, Scalable and Extensible Flash Emulator,” in Proceedings of the 16th USENIX Conference on File and Storage Technologies (FAST’18), 2018, pp. 83–90.
  21. H. Li, M. L. Putra, R. Shi, X. Lin, G. R. Ganger, and H. S. Gunawi, “IODA: A Host/Device Co-Design for Strong Predictability Contract on Modern Flash Storage,” in Proceedings of the 28th Symposium on Operating Systems Principles (SOSP’21), 2021, pp. 263–279.
  22. P. Li, Y. Hua, J. Jia, and P. Zuo, “FINEdex: a Fine-grained Learned Index Scheme for Scalable and Concurrent Memory Systems,” Proceedings of the VLDB Endowment, vol. 15, no. 2, pp. 321–334, 2021.
  23. P. Li, Y. Hua, P. Zuo, Z. Chen, and J. Sheng, “ROLEX: A Scalable RDMA-oriented Learned Key-Value Store for Disaggregated Memory Systems,” in Proceedings of the 21st USENIX Conference on File and Storage Technologies (FAST’23), February 2023, pp. 99–114.
  24. C.-Y. Liu, Y. Lee, W. Choi, M. Jung, M. T. Kandemir, and C. Das, “GSSA: A Resource Allocation Scheme Customized for 3D NAND SSDs,” in Proceedings of the 27th International Symposium on High Performance Computer Architecture (HPCA’21), 2021, pp. 426–439.
  25. B. Lu, J. Ding, E. Lo, U. F. Minhas, and T. Wang, “APEX: a High-Performance Learned Index on Persistent Memory,” Proceedings of the VLDB Endowment, vol. 15, no. 5, pp. 597–610, 2021.
  26. Y. Lv, L. Shi, Q. Li, C. Gao, Y. Song, L. Luo, and Y. Zhang, “MGC: Multiple-Gray-Code for 3D NAND Flash based High-Density SSDs,” in Proceedings of the 29th International Symposium on High Performance Computer Architecture (HPCA’23), 2023, pp. 122–136.
  27. S. Maneas, K. Mahdaviani, T. Emami, and B. Schroeder, “Operational Characteristics of SSDs in Enterprise Storage Systems: A Large-Scale Field Study,” in Proceedings of the 20th USENIX Conference on File and Storage Technologies (FAST’22), 2022, pp. 165–180.
  28. P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham, “Pebblesdb: Building Key-Value Stores Using Fragmented Log-structured Merge Trees,” in Proceedings of the 26th Symposium on Operating Systems Principles (SOSP’17), 2017, pp. 497–514.
  29. J. Sun, S. Li, Y. Sun, C. Sun, D. Vucinic, and J. Huang, “LeaFTL: A Learning-based Flash Translation Layer for Solid-State Drives,” in Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’23), 2023, pp. 442–456.
  30. K. Tim, B. Alex, C. E. H, D. Jeffrey, and P. Neoklis, “The Case For Learned Index Structures,” in Proceedings of the 2018 International Conference on Management of Data (SIGMOD’18), 2018, pp. 489–504.
  31. M. Wang, Y. Zhang, and W. Kang, “ZFTL: A Zone-based Flash Translation Layer with a Two-tier Selective Caching Mechanism,” in Proceedings of the 14th International Conference on Communication Technology (ICCT’12), 2012, pp. 578–588.
  32. X. Wei, R. Chen, and H. Chen, “Fast RDMA-based Ordered Key-Value Store Using Remote Learned Cache,” in Proceedings of the 14th USENIX Conference on Operating Systems Design and Implementation (OSDI’20), 2020, pp. 117–135.
  33. S. Yoo and D. Shin, “Reinforcement Learning-Based SLC Cache Technique for Enhancing SSD Write Performance,” in Proceedings of the 12th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’20), 2020.
  34. J. Zhang, J. Shu, and Y. Lu, “ParaFS: A Log-structured File System to Exploit the Internal Parallelism of Flash Devices,” in Proceedings of the USENIX Annual Technical Conference (USENIX ATC’16), June 2016, pp. 89–100.
  35. T. Zhang, Z. Cheng, and J. Li, “Reinforcement Learning-driven Address Mapping and Caching for Flash-based Remote Sensing Image Processing,” Journal of Systems Architecture, vol. 98, no. c, pp. 374–387, 2019.
  36. Y. Zhou, F. Wu, P. Huang, X. He, C. Xie, and J. Zhou, “An Efficient Page-level FTL to Optimize Address Translation in Flash Memory,” in Proceedings of the 10th European Conference on Computer Systems (EuroSys’15), 2015, pp. 1–16.
  37. Y. Zhou, Q. Wu, F. Wu, H. Jiang, J. Zhou, and C. Xie, “Remap-SSD: Safely and Efficiently Exploiting SSD Address Remapping to Eliminate Duplicate Writes,” in Proceedings of the 19th USENIX Conference on File and Storage Technologies (FAST’21), 2021, pp. 187–202.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com