Inverse spectral problem for the third-order differential equation
Abstract: This paper is concerned with the inverse spectral problem for the third-order differential equation with distribution coefficient. The inverse problem consists in the recovery of the differential expression coefficients from the spectral data of two boundary value problems with separated boundary conditions. For this inverse problem, we solve the most fundamental question of the inverse spectral theory about the necessary and sufficient conditions of solvability. In addition, we prove the local solvability and stability of the inverse problem. Furthermore, we obtain very simple sufficient conditions of solvability in the self-adjoint case. The main results are proved by a constructive method that reduces the nonlinear inverse problem to a linear equation in the Banach space of bounded infinite sequences. In the future, our results can be generalized to various classes of higher-order differential operators with integrable or distribution coefficients.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.