Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Leader-following Consensus for Nonlinear Multi-Agent Systems against Composite Attacks: A Twins Layer Approach (2303.12823v1)

Published 22 Mar 2023 in eess.SY, cs.AI, and cs.SY

Abstract: This paper studies the leader-following consensuses of uncertain and nonlinear multi-agent systems against composite attacks (CAs), including Denial of Service (DoS) attacks and actuation attacks (AAs). A double-layer control framework is formulated, where a digital twin layer (TL) is added beside the traditional cyber-physical layer (CPL), inspired by the recent Digital Twin technology. Consequently, the resilient control task against CAs can be divided into two parts: One is distributed estimation against DoS attacks on the TL and the other is resilient decentralized tracking control against actuation attacks on the CPL. %The data-driven scheme is used to deal with both model non-linearity and model uncertainty, in which only the input and output data of the system are employed throughout the whole control process. First, a distributed observer based on switching estimation law against DoS is designed on TL. Second, a distributed model free adaptive control (DMFAC) protocol based on attack compensation against AAs is designed on CPL. Moreover, the uniformly ultimately bounded convergence of consensus error of the proposed double-layer DMFAC algorithm is strictly proved. Finally, the simulation verifies the effectiveness of the resilient double-layer control scheme.

Summary

We haven't generated a summary for this paper yet.