Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal mask for hard X rays (2303.12809v2)

Published 18 Mar 2023 in eess.IV, physics.acc-ph, and physics.optics

Abstract: The penetrating power of X rays underpins important applications such as medical radiography. However, this same attribute makes it challenging to achieve flexible on-demand patterning of X-ray beams. One possible path to this goal is ``ghost projection'', a method which may be viewed as a reversed form of classical ghost imaging. This technique employs multiple exposures, of a single illuminated non-configurable mask that is transversely displaced to a number of specified positions, to create any desired pattern. An experimental proof-of-concept is given for this idea, using hard X rays. The written pattern is arbitrary, up to a tunable constant offset, and its spatial resolution is limited by both (i) the finest features present in the illuminated mask and (ii) inaccuracies in mask positioning and mask exposure time. In principle, the method could be used to make a universal lithographic mask in the hard-X-ray regime. Ghost projection might also be used as a dynamically-configurable beam-shaping element, namely the hard-X-ray equivalent of a spatial light modulator. The underpinning principle can be applied to gamma rays, neutrons, electrons, muons, and atomic beams. Our flexible approach to beam shaping gives a potentially useful means to manipulate such fields.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. D. M. Paganin, Writing arbitrary distributions of radiant exposure by scanning a single illuminated spatially random screen, Phys. Rev. A 100, 063823 (2019).
  2. D. Ceddia and D. M. Paganin, Ghost projection, Phys. Rev. A 105, 013512 (2022).
  3. M. Utsuro and V. K. Ignatovich, Handbook of Neutron Optics (Wiley VCH Verlag GmbH, Weinheim, 2010).
  4. J. M. Cowley, Diffraction Physics, 3rd ed. (Elsevier, Amsterdam, 1995).
  5. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, New York, 1999).
  6. D. C. Joy, Helium Ion Microscopy: Principles and Applications (Springer, New York, 2013).
  7. D. Loterie, P. Delrot, and C. Moser, High-resolution tomographic volumetric additive manufacturing, Nat. Commun. 11, 852 (2020).
  8. B. Cho, Intensity-modulated radiation therapy: a review with a physics perspective, Radiat. Oncol. J. 36(1), 1 (2018).
  9. J. H. Shapiro, Computational ghost imaging, Phys. Rev. A 78, 061802 (2008).
  10. B. I. Erkmen and J. H. Shapiro, Ghost imaging: from quantum to classical to computational, Adv. Opt. Photonics 2, 405 (2010).
  11. J. H. Shapiro and R. W. Boyd, The physics of ghost imaging, Quantum Inf. Process. 11, 949 (2012).
  12. M. J. Padgett and R. W. Boyd, An introduction to ghost imaging: quantum and classical, Phil. Trans. R. Soc. A 375, 20160233 (2017).
  13. Y. Bromberg, O. Katz, and Y. Silberberg, Ghost imaging with a single detector, Phys. Rev. A 79, 053840 (2009).
  14. O. Katz, Y. Bromberg, and Y. Silberberg, Compressive ghost imaging, Appl. Phys. Lett. 95, 131110 (2009).
  15. D. M. Paganin, Coherent X-Ray Optics (Oxford University Press, Oxford, 2006).
  16. C. Zhang, Y. Xin, and X. Zhu, Multiscale and local engineering of speckle morphology through disordered media, Opt. Lett. 47, 6029 (2022).
  17. A. Boccolini, A. Fedrizzi, and D. Faccio, Ghost imaging with the human eye, Opt. Express 27, 9258 (2019).
  18. Y. Shroff, Y. Chen, and W. Oldham, Fabrication of parallel-plate nanomirror arrays for extreme ultraviolet maskless lithography, J. Vac. Sci. Technol. B 19, 2412 (2001), https://avs.scitation.org/doi/pdf/10.1116/1.1417544 .
  19. A. J. Bourdillon and C. B. Boothroyd, Proximity correction simulations in ultra-high resolution x-ray lithography, J. Phys. D: Appl. Phys. 34, 3209 (2001).
  20. D. Meschede and H. Metcalf, Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces, J. Phys. D: Appl. Phys. 36, R17 (2003).
  21. M.-C. Vozenin, J. Bourhis, and M. Durante, Towards clinical translation of FLASH radiotherapy, Nat. Rev. Clin. Oncol. 19, 791 (2022).
  22. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).
  23. R. S. Armour and J. A. Wheeler, Physicist’s version of traveling salesman problem: statistical analysis, Am. J. Phys. 51, 405 (1983).
  24. S. W. Paine and J. R. Fienup, Machine learning for improved image-based wavefront sensing, Opt. Lett. 43, 1235 (2018).
  25. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).
  26. J. J. Stamnes, Waves in Focal Regions (Taylor & Francis, New York, 1986).
  27. Y. Chen, Nanofabrication by electron beam lithography and its applications: A review, Microelectron. Eng. 135, 57 (2015).
  28. H. H. Barrett and K. J. Myers, Foundations of Image Science (John Wiley & Sons, Hoboken NJ, 2004).
  29. E. J. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE Trans. Inf. Theory 52, 5406 (2006).
  30. D. L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory 52, 1289 (2006).
  31. K. Huang, Statistical Mechanics, 2nd ed. (Wiley, New York, USA, 1987).
Citations (1)

Summary

We haven't generated a summary for this paper yet.