Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diffusion-based Target Sampler for Unsupervised Domain Adaptation (2303.12724v1)

Published 17 Mar 2023 in cs.CV and cs.AI

Abstract: Limited transferability hinders the performance of deep learning models when applied to new application scenarios. Recently, unsupervised domain adaptation (UDA) has achieved significant progress in addressing this issue via learning domain-invariant features. However, large domain shifts and the sample scarcity in the target domain make existing UDA methods achieve suboptimal performance. To alleviate these issues, we propose a plug-and-play Diffusion-based Target Sampler (DTS) to generate high fidelity and diversity pseudo target samples. By introducing class-conditional information, the labels of the generated target samples can be controlled. The generated samples can well simulate the data distribution of the target domain and help existing UDA methods transfer from the source domain to the target domain more easily, thus improving the transfer performance. Extensive experiments on various benchmarks demonstrate that the performance of existing UDA methods can be greatly improved through the proposed DTS method.

Summary

We haven't generated a summary for this paper yet.