Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EZtune: A Package for Automated Hyperparameter Tuning in R (2303.12177v1)

Published 3 Mar 2023 in cs.LG, cs.MS, and stat.CO

Abstract: Statistical learning models have been growing in popularity in recent years. Many of these models have hyperparameters that must be tuned for models to perform well. Tuning these parameters is not trivial. EZtune is an R package with a simple user interface that can tune support vector machines, adaboost, gradient boosting machines, and elastic net. We first provide a brief summary of the the models that EZtune can tune, including a discussion of each of their hyperparameters. We then compare the ease of using EZtune, caret, and tidymodels. This is followed with a comparison of the accuracy and computation times for models tuned with EZtune and tidymodels. We conclude with a demonstration of how how EZtune can be used to help select a final model with optimal predictive power. Our comparison shows that EZtune can tune support vector machines and gradient boosting machines with EZtune also provides a user interface that is easy to use for a novice to statistical learning models or R.

Citations (1)

Summary

We haven't generated a summary for this paper yet.