Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frobenius algebras associated with the $α$-induction for equivariantly braided tensor categories (2303.11845v2)

Published 21 Mar 2023 in math.QA, math-ph, math.CT, math.MP, and math.OA

Abstract: Let $G$ be a group. We give a categorical definition of the $G$-equivariant $\alpha$-induction associated with a given $G$-equivariant Frobenius algebra in a $G$-braided multitensor category, which generalizes the $\alpha$-induction for $G$-twisted representations of conformal nets. For a given $G$-equivariant Frobenius algebra in a spherical $G$-braided fusion category, we construct a $G$-equivariant Frobenius algebra, which we call a $G$-equivariant $\alpha$-induction Frobenius algebra, in a suitably defined category called neutral double. This construction generalizes Rehren's construction of $\alpha$-induction Q-systems. Finally, we define the notion of the $G$-equivariant full center of a $G$-equivariant Frobenius algebra in a spherical $G$-braided fusion category and show that it indeed coincides with the corresponding $G$-equivariant $\alpha$-induction Frobenius algebra, which generalizes a theorem of Bischoff, Kawahigashi and Longo.

Summary

We haven't generated a summary for this paper yet.