Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamically Expandable Graph Convolution for Streaming Recommendation (2303.11700v1)

Published 21 Mar 2023 in cs.IR

Abstract: Personalized recommender systems have been widely studied and deployed to reduce information overload and satisfy users' diverse needs. However, conventional recommendation models solely conduct a one-time training-test fashion and can hardly adapt to evolving demands, considering user preference shifts and ever-increasing users and items in the real world. To tackle such challenges, the streaming recommendation is proposed and has attracted great attention recently. Among these, continual graph learning is widely regarded as a promising approach for the streaming recommendation by academia and industry. However, existing methods either rely on the historical data replay which is often not practical under increasingly strict data regulations, or can seldom solve the \textit{over-stability} issue. To overcome these difficulties, we propose a novel \textbf{D}ynamically \textbf{E}xpandable \textbf{G}raph \textbf{C}onvolution (DEGC) algorithm from a \textit{model isolation} perspective for the streaming recommendation which is orthogonal to previous methods. Based on the motivation of disentangling outdated short-term preferences from useful long-term preferences, we design a sequence of operations including graph convolution pruning, refining, and expanding to only preserve beneficial long-term preference-related parameters and extract fresh short-term preferences. Moreover, we model the temporal user preference, which is utilized as user embedding initialization, for better capturing the individual-level preference shifts. Extensive experiments on the three most representative GCN-based recommendation models and four industrial datasets demonstrate the effectiveness and robustness of our method.

Citations (26)

Summary

We haven't generated a summary for this paper yet.