Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of variational Monte Carlo simulation and scale-invariant pre-training (2303.11602v4)

Published 21 Mar 2023 in cs.LG and physics.comp-ph

Abstract: We provide theoretical convergence bounds for the variational Monte Carlo (VMC) method as applied to optimize neural network wave functions for the electronic structure problem. We study both the energy minimization phase and the supervised pre-training phase that is commonly used prior to energy minimization. For the energy minimization phase, the standard algorithm is scale-invariant by design, and we provide a proof of convergence for this algorithm without modifications. The pre-training stage typically does not feature such scale-invariance. We propose using a scale-invariant loss for the pretraining phase and demonstrate empirically that it leads to faster pre-training.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. doi:10.1103/RevModPhys.73.33.
  2. doi:10.1016/bs.aiq.2015.07.003. URL https://www.sciencedirect.com/science/article/pii/S0065327615000386
  3. doi:10.1017/9781316417041.
  4. doi:10.1103/PhysRevLett.80.4558. URL https://link.aps.org/doi/10.1103/PhysRevLett.80.4558
  5. doi:10.1103/PhysRevB.64.024512. URL https://link.aps.org/doi/10.1103/PhysRevB.64.024512
  6. doi:10.1103/PhysRevLett.87.043401. URL https://link.aps.org/doi/10.1103/PhysRevLett.87.043401
  7. doi:10.1126/science.aag2302.
  8. doi:10.1103/PhysRevB.96.205152.
  9. doi:10.1103/PhysRevLett.121.167204.
  10. doi:10.1103/PhysRevLett.122.250501.
  11. doi:10.1103/PhysRevLett.122.226401.
  12. doi:10.1016/j.jcp.2019.108929.
  13. doi:10.1103/physrevresearch.2.012039.
  14. doi:10.1038/s41557-020-0544-y.
  15. doi:10.1103/PhysRevResearch.2.033429. URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.033429
  16. doi:10.1103/PhysRevB.102.205122.
  17. doi:10.1038/s41467-020-15724-9.
  18. doi:10.48550/ARXIV.2211.13672. URL https://arxiv.org/abs/2211.13672
  19. doi:10.48550/ARXIV.2205.09438. URL https://arxiv.org/abs/2205.09438
  20. doi:10.48550/ARXIV.2208.12590. URL https://arxiv.org/abs/2208.12590
  21. arXiv:2211.13672.
  22. doi:10.1109/TAC.2013.2254619.
  23. doi:10.48550/ARXIV.2011.07125. URL https://arxiv.org/abs/2011.07125
  24. doi:10.1007/s10107-016-1030-6.
  25. doi:10.1103/PhysRevLett.99.220602. URL https://link.aps.org/doi/10.1103/PhysRevLett.99.220602
  26. doi:10.1103/PhysRevB.85.045103. URL https://link.aps.org/doi/10.1103/PhysRevB.85.045103
  27. doi:10.1039/C9CP02269D. URL http://dx.doi.org/10.1039/C9CP02269D
  28. arXiv:1903.05662.
Citations (1)

Summary

We haven't generated a summary for this paper yet.