Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counterfactually Fair Regression with Double Machine Learning (2303.11529v1)

Published 21 Mar 2023 in cs.LG and stat.ME

Abstract: Counterfactual fairness is an approach to AI fairness that tries to make decisions based on the outcomes that an individual with some kind of sensitive status would have had without this status. This paper proposes Double Machine Learning (DML) Fairness which analogises this problem of counterfactual fairness in regression problems to that of estimating counterfactual outcomes in causal inference under the Potential Outcomes framework. It uses arbitrary machine learning methods to partial out the effect of sensitive variables on nonsensitive variables and outcomes. Assuming that the effects of the two sets of variables are additively separable, outcomes will be approximately equalised and individual-level outcomes will be counterfactually fair. This paper demonstrates the approach in a simulation study pertaining to discrimination in workplace hiring and an application on real data estimating the GPAs of law school students. It then discusses when it is appropriate to apply such a method to problems of real-world discrimination where constructs are conceptually complex and finally, whether DML Fairness can achieve justice in these settings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Patrick Rehill (7 papers)

Summary

We haven't generated a summary for this paper yet.