Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Open-vocabulary Panoptic Segmentation with Embedding Modulation (2303.11324v2)

Published 20 Mar 2023 in cs.CV

Abstract: Open-vocabulary image segmentation is attracting increasing attention due to its critical applications in the real world. Traditional closed-vocabulary segmentation methods are not able to characterize novel objects, whereas several recent open-vocabulary attempts obtain unsatisfactory results, i.e., notable performance reduction on the closed vocabulary and massive demand for extra data. To this end, we propose OPSNet, an omnipotent and data-efficient framework for Open-vocabulary Panoptic Segmentation. Specifically, the exquisitely designed Embedding Modulation module, together with several meticulous components, enables adequate embedding enhancement and information exchange between the segmentation model and the visual-linguistic well-aligned CLIP encoder, resulting in superior segmentation performance under both open- and closed-vocabulary settings with much fewer need of additional data. Extensive experimental evaluations are conducted across multiple datasets (e.g., COCO, ADE20K, Cityscapes, and PascalContext) under various circumstances, where the proposed OPSNet achieves state-of-the-art results, which demonstrates the effectiveness and generality of the proposed approach. The code and trained models will be made publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xi Chen (1036 papers)
  2. Shuang Li (203 papers)
  3. Ser-Nam Lim (116 papers)
  4. Antonio Torralba (178 papers)
  5. Hengshuang Zhao (118 papers)
Citations (29)

Summary

We haven't generated a summary for this paper yet.