Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AnimeDiffusion: Anime Face Line Drawing Colorization via Diffusion Models (2303.11137v1)

Published 20 Mar 2023 in cs.CV

Abstract: It is a time-consuming and tedious work for manually colorizing anime line drawing images, which is an essential stage in cartoon animation creation pipeline. Reference-based line drawing colorization is a challenging task that relies on the precise cross-domain long-range dependency modelling between the line drawing and reference image. Existing learning methods still utilize generative adversarial networks (GANs) as one key module of their model architecture. In this paper, we propose a novel method called AnimeDiffusion using diffusion models that performs anime face line drawing colorization automatically. To the best of our knowledge, this is the first diffusion model tailored for anime content creation. In order to solve the huge training consumption problem of diffusion models, we design a hybrid training strategy, first pre-training a diffusion model with classifier-free guidance and then fine-tuning it with image reconstruction guidance. We find that with a few iterations of fine-tuning, the model shows wonderful colorization performance, as illustrated in Fig. 1. For training AnimeDiffusion, we conduct an anime face line drawing colorization benchmark dataset, which contains 31696 training data and 579 testing data. We hope this dataset can fill the gap of no available high resolution anime face dataset for colorization method evaluation. Through multiple quantitative metrics evaluated on our dataset and a user study, we demonstrate AnimeDiffusion outperforms state-of-the-art GANs-based models for anime face line drawing colorization. We also collaborate with professional artists to test and apply our AnimeDiffusion for their creation work. We release our code on https://github.com/xq-meng/AnimeDiffusion.

Citations (6)

Summary

We haven't generated a summary for this paper yet.