Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Kripke, Vietoris and Hausdorff Polynomial Functors (2303.11071v1)

Published 20 Mar 2023 in cs.LO and math.CT

Abstract: The Vietoris space of compact subsets of a given Hausdorff space yields an endofunctor $\mathscr V$ on the category of Hausdorff spaces. Vietoris polynomial endofunctors on that category are built from $\mathscr V$, the identity and constant functors by forming products, coproducts and compositions. These functors are known to have terminal coalgebras and we deduce that they also have initial algebras. We present an analogous class of endofunctors on the category of extended metric spaces, using in lieu of $\mathscr V$ the Hausdorff functor $\mathcal H$. We prove that the ensuing Hausdorff polynomial functors have terminal coalgebras and initial algebras. Whereas the canonical constructions of terminal coalgebras for Vietoris polynomial functors takes $\omega$ steps, one needs $\omega + \omega$ steps in general for Hausdorff ones. We also give a new proof that the closed set functor on metric spaces has no fixed points.

Summary

We haven't generated a summary for this paper yet.