Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bi-orthogonal fPINN: A physics-informed neural network method for solving time-dependent stochastic fractional PDEs (2303.10913v1)

Published 20 Mar 2023 in math.NA and cs.NA

Abstract: Fractional partial differential equations (FPDEs) can effectively represent anomalous transport and nonlocal interactions. However, inherent uncertainties arise naturally in real applications due to random forcing or unknown material properties. Mathematical models considering nonlocal interactions with uncertainty quantification can be formulated as stochastic fractional partial differential equations (SFPDEs). There are many challenges in solving SFPDEs numerically, especially for long-time integration since such problems are high-dimensional and nonlocal. Here, we combine the bi-orthogonal (BO) method for representing stochastic processes with physics-informed neural networks (PINNs) for solving partial differential equations to formulate the bi-orthogonal PINN method (BO-fPINN) for solving time-dependent SFPDEs. Specifically, we introduce a deep neural network for the stochastic solution of the time-dependent SFPDEs, and include the BO constraints in the loss function following a weak formulation. Since automatic differentiation is not currently applicable to fractional derivatives, we employ discretization on a grid to to compute the fractional derivatives of the neural network output. The weak formulation loss function of the BO-fPINN method can overcome some drawbacks of the BO methods and thus can be used to solve SFPDEs with eigenvalue crossings. Moreover, the BO-fPINN method can be used for inverse SFPDEs with the same framework and same computational complexity as for forward problems. We demonstrate the effectiveness of the BO-fPINN method for different benchmark problems. The results demonstrate the flexibility and efficiency of the proposed method, especially for inverse problems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.