Engineering Higher-Order Dirac and Weyl Semimetallic phase in 3D Topolectrical Circuits (2303.10911v2)
Abstract: We propose a 3D topolectrical (TE) network that can be tuned to realize various higher-order topological gapless and chiral phases. We first study a higher-order Dirac semimetal phase that exhibits a hinge-like Fermi arc linking the Dirac points. This circuit can be extended to host highly tunable first- and second-order Weyl semimetal phases by introducing a non-reciprocal resistive coupling in the x-y plane that breaks time reversal symmetry. The first- and second-order Weyl points are connected by zero-admittance surface and hinge states, respectively. We also study the emergence of first- and second-order chiral modes induced by resistive couplings between similar nodes in the z-direction. These modes respectively occur in the midgap of the surface and hinge admittance bands in our circuit model without the need for any external magnetic field.
- B. Yan and C. Felser, Annu. Rev. Condens. Matter Phys. 8, 337 (2017).
- S. Islam, N. Saquib, and S. Subrina, in 8th International Conference on Electrical and Computer Engineering (IEEE, 2014) pp. 104–107.
- M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
- X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
- E. Shimshoni and A. Auerbach, Phys. Rev. B 55, 9817 (1997).
- B. A. Bernevig and T. L. Hughes, Topological insulators and topological superconductors (Princeton university press, 2013).
- M. Sato and Y. Ando, Rep. Prog. Phys. 80, 076501 (2017).
- M. Ezawa, Phys. Rev. Lett. 120, 026801 (2018).
- Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
- D. Vanderbilt, Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge University Press, 2018).
- C. L. Kane, in Cont. Con. Conden. Matt. Sci., Vol. 6 (Elsevier, 2013) pp. 3–34.
- M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 027201 (2013).
- S. M. Young and C. L. Kane, Phys. Rev. Lett. 115, 126803 (2015).
- N. Armitage, E. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).
- S. Longhi, Phys. Rev. Res. 1, 023013 (2019).
- M. Ezawa, Phys. Rev. B 100, 045407 (2019).
- A. Zyuzin and A. Burkov, Phys. Rev. B 86, 115133 (2012).
- D. Pikulin, A. Chen, and M. Franz, Phys. Rev. X 6, 041021 (2016).
- S. A. A. Ghorashi, T. Li, and T. L. Hughes, Phys. Rev. Lett. 125, 266804 (2020).
- R. Süsstrunk and S. D. Huber, Science 349, 47 (2015).
- E. Edvardsson, F. K. Kunst, and E. J. Bergholtz, Phys. Rev. B 99, 081302 (2019).
- X.-W. Luo and C. Zhang, Phys. Rev. Lett. 123, 073601 (2019).
- S. M. Rafi-Ul-Islam, Z. Bin Siu, and M. B. A. Jalil, Commun. Phys 3, 72 (2020c).
- S. M. Rafi-Ul-Islam, Z. B. Siu, and M. B. A. Jalil, Appl. Phys. Lett. 116, 111904 (2020d).
- S. M. Rafi-Ul-Islam, Z. B. Siu, and M. B. A. Jalil, Phys. Rev. B 103, 035420 (2021a).
- S. M. Rafi-Ul-Islam, Z. B. Siu, and M. B. A. Jalil, New J. Phys. 23, 033014 (2021b).
- Y. You, D. Litinski, and F. Von Oppen, Phys. Rev. B 100, 054513 (2019).
- A. Savin and O. Gendelman, Phys. Rev. E 67, 041205 (2003).
- K. Zhang, Z. Yang, and C. Fang, Nat. Commun. 13, 2496 (2022b).
- W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Physical Review B 96, 245115 (2017).
- R. Okugawa, S. Hayashi, and T. Nakanishi, Phys. Rev. B 100, 235302 (2019).