Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stop Words for Processing Software Engineering Documents: Do they Matter? (2303.10439v2)

Published 18 Mar 2023 in cs.SE and cs.CL

Abstract: Stop words, which are considered non-predictive, are often eliminated in natural language processing tasks. However, the definition of uninformative vocabulary is vague, so most algorithms use general knowledge-based stop lists to remove stop words. There is an ongoing debate among academics about the usefulness of stop word elimination, especially in domain-specific settings. In this work, we investigate the usefulness of stop word removal in a software engineering context. To do this, we replicate and experiment with three software engineering research tools from related work. Additionally, we construct a corpus of software engineering domain-related text from 10,000 Stack Overflow questions and identify 200 domain-specific stop words using traditional information-theoretic methods. Our results show that the use of domain-specific stop words significantly improved the performance of research tools compared to the use of a general stop list and that 17 out of 19 evaluation measures showed better performance. Online appendix: https://zenodo.org/record/7865748

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yaohou Fan (2 papers)
  2. Chetan Arora (79 papers)
  3. Christoph Treude (137 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.