Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering Predictable Latent Factors for Time Series Forecasting (2303.10426v2)

Published 18 Mar 2023 in cs.LG

Abstract: Modern time series forecasting methods, such as Transformer and its variants, have shown strong ability in sequential data modeling. To achieve high performance, they usually rely on redundant or unexplainable structures to model complex relations between variables and tune the parameters with large-scale data. Many real-world data mining tasks, however, lack sufficient variables for relation reasoning, and therefore these methods may not properly handle such forecasting problems. With insufficient data, time series appear to be affected by many exogenous variables, and thus, the modeling becomes unstable and unpredictable. To tackle this critical issue, in this paper, we develop a novel algorithmic framework for inferring the intrinsic latent factors implied by the observable time series. The inferred factors are used to form multiple independent and predictable signal components that enable not only sparse relation reasoning for long-term efficiency but also reconstructing the future temporal data for accurate prediction. To achieve this, we introduce three characteristics, i.e., predictability, sufficiency, and identifiability, and model these characteristics via the powerful deep latent dynamics models to infer the predictable signal components. Empirical results on multiple real datasets show the efficiency of our method for different kinds of time series forecasting. The statistical analysis validates the predictability of the learned latent factors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks for video recognition,” in Proc. Int. Conf. Comput. Vis., 2019, pp. 6201–6210.
  2. J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-networks for machine reading,” in Proc. Conf. Emp. Methods Nat. Lang. Process., 2016, pp. 551–561.
  3. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv. Neural Inform. Process. Syst., 2017, pp. 5998–6008.
  4. Y. Xu and S. B. Cohen, “Stock movement prediction from tweets and historical prices,” in Proc. Assoc. for Comput. Linguist., 2018, pp. 1970–1979.
  5. L. Shi, Z. Teng, L. Wang, Y. Zhang, and A. Binder, “Deepclue: Visual interpretation of text-based deep stock prediction,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 6, pp. 1094–1108, 2019.
  6. D. Cheng, F. Yang, S. Xiang, and J. Liu, “Financial time series forecasting with multi-modality graph neural network,” Pattern Recognit., vol. 121, p. 108218, 2022.
  7. W. Xu, W. Liu, L. Wang, Y. Xia, J. Bian, J. Yin, and T. Liu, “HIST: A graph-based framework for stock trend forecasting via mining concept-oriented shared information,” vol. arXiv:2110.13716, 2021.
  8. Y. Duan, L. Wang, Q. Zhang, and J. Li, “Factorvae: A probabilistic dynamic factor model based on variational autoencoder for predicting cross-sectional stock returns,” in Proc. AAAI Conf. Artif. Intell., 2022.
  9. R. Asadi and A. C. Regan, “A spatio-temporal decomposition based deep neural network for time series forecasting,” Appl. Soft Comput., vol. 87, p. 105963, 2020.
  10. B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-BEATS: neural basis expansion analysis for interpretable time series forecasting,” in Proc. Int. Conf. Learn. Represent., 2020.
  11. H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting,” in Proc. Adv. Neural Inform. Process. Syst., 2021, pp. 22 419–22 430.
  12. R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “Stl: A seasonal-trend decomposition,” J. Off. Stat., vol. 6, no. 1, pp. 3–73, 1990.
  13. A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective for time series forecasting?” in Proc. AAAI Conf. Artif. Intell., 2023, pp. 11 121–11 128.
  14. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, vol. 454, no. 1971, pp. 903–995, 1998.
  15. K. Dragomiretskiy and D. Zosso, “Variational mode decomposition,” IEEE Trans. Sign. Process., vol. 62, no. 3, pp. 531–544, 2014.
  16. C. Challu, K. G. Olivares, B. N. Oreshkin, F. Garza, M. Mergenthaler, and A. Dubrawski, “N-hits: Neural hierarchical interpolation for time series forecasting,” in Proc. AAAI Conf. Artif. Intell., 2023.
  17. C. A. Sims, “Macroeconomics and reality,” Econ.: j. Econ. Society, pp. 1–48, 1980.
  18. G. Tauchen, “Finite state markov-chain approximations to univariate and vector autoregressions,” Econ. Letters, vol. 20, no. 2, pp. 177–181, 1986.
  19. G. W. Morrison and D. H. Pike, “Kalman filtering applied to statistical forecasting,” Manage. Sci., vol. 23, no. 7, pp. 768–774, 1977.
  20. T. W. Joo and S. B. Kim, “Time series forecasting based on wavelet filtering,” Expert Syst. Appl., vol. 42, no. 8, pp. 3868–3874, 2015.
  21. W. F. Sharpe, “Capital asset prices: A theory of market equilibrium under conditions of risk,” The J. Finan., vol. 19, no. 3, pp. 425–442, 1964.
  22. E. F. Fama and K. R. French, “The cross-section of expected stock returns,” The J. Finan., vol. 47, no. 2, pp. 427–465, 1992.
  23. S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and T. Januschowski, “Deep state space models for time series forecasting,” in Proc. Adv. Neural Inform. Process. Syst., 2018, pp. 7796–7805.
  24. V. Flunkert, D. Salinas, and J. Gasthaus, “Deepar: Probabilistic forecasting with autoregressive recurrent networks,” Int. J. Forecast., vol. 36, no. 3, pp. 1181–1191, 2020.
  25. Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. W. Cottrell, “A dual-stage attention-based recurrent neural network for time series prediction,” in Proc. Int. Joint Conf. Artif. Intell., 2017, pp. 2627–2633.
  26. H. Song, D. Rajan, J. J. Thiagarajan, and A. Spanias, “Attend and diagnose: Clinical time series analysis using attention models,” in Proc. AAAI Conf. Artif. Intell., 2018, pp. 4091–4098.
  27. F. Feng, H. Chen, X. He, J. Ding, M. Sun, and T. Chua, “Enhancing stock movement prediction with adversarial training,” in Proc. Int. Joint Conf. Artif. Intell., 2019, pp. 5843–5849.
  28. A. Borovykh, S. Bohte, and C. W. Oosterlee, “Conditional time series forecasting with convolutional neural networks,” ArXiv, vol. abs/1703.04691, 2017.
  29. G. Lai, W. Chang, Y. Yang, and H. Liu, “Modeling long- and short-term temporal patterns with deep neural networks,” in Proc. Int. Conf. Res. Dev. Inf. Retrieval, 2018, pp. 95–104.
  30. R. Sen, H. Yu, and I. S. Dhillon, “Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting,” in Proc. Adv. Neural Inform. Process. Syst., 2019, pp. 4838–4847.
  31. N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The efficient transformer,” in Proc. Int. Conf. Learn. Represent., 2020.
  32. H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond efficient transformer for long sequence time-series forecasting,” in Proc. AAAI Conf. Artif. Intell., 2021, pp. 11 106–11 115.
  33. Y. Liu, H. Wu, J. Wang, and M. Long, “Non-stationary transformers: Exploring the stationarity in time series forecasting,” in Proc. Adv. Neural Inform. Process. Syst., 2022.
  34. T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting,” in Proc. Int. Conf. Mach. Learn., vol. 162, 2022, pp. 27 268–27 286.
  35. D. Hafner, T. P. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson, “Learning latent dynamics for planning from pixels,” in Proc. Int. Conf. Mach. Learn., vol. 97, 2019, pp. 2555–2565.
  36. P. Becker, H. Pandya, G. H. W. Gebhardt, C. Zhao, C. J. Taylor, and G. Neumann, “Recurrent kalman networks: Factorized inference in high-dimensional deep feature spaces,” in Proc. Int. Conf. Mach. Learn., vol. 97, 2019, pp. 544–552.
  37. V. Saxena, J. Ba, and D. Hafner, “Clockwork variational autoencoders,” in Proc. Adv. Neural Inform. Process. Syst., 2021, pp. 29 246–29 257.
  38. I. Khemakhem, D. P. Kingma, R. P. Monti, and A. Hyvärinen, “Variational autoencoders and nonlinear ICA: A unifying framework,” in Proc. Int. Conf. Artif. Intell. Stat., vol. 108, 2020, pp. 2207–2217.
  39. H. Hälvä, S. L. Corff, L. Lehéricy, J. So, Y. Zhu, E. Gassiat, and A. Hyvärinen, “Disentangling identifiable features from noisy data with structured nonlinear ICA,” in Proc. Adv. Neural Inform. Process. Syst., 2021, pp. 1624–1633.
  40. Y. Chen, Z. Wei, and X. Huang, “Incorporating corporation relationship via graph convolutional neural networks for stock price prediction,” in Proc. ACM Int. Conf. Inf. Knowl. Manage., 2018, pp. 1655–1658.
  41. R. Kim, C. H. So, M. Jeong, S. Lee, J. Kim, and J. Kang, “HATS: A hierarchical graph attention network for stock movement prediction,” ArXiv, vol. abs/1908.07999, 2019.
  42. Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting the dots: Multivariate time series forecasting with graph neural networks,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Min., 2020, pp. 753–763.
  43. Y. Chen, I. Segovia-Dominguez, B. Coskunuzer, and Y. R. Gel, “Tamp-s2gcnets: Coupling time-aware multipersistence knowledge representation with spatio-supra graph convolutional networks for time-series forecasting,” in Proc. Int. Conf. Learn. Represent., 2022.
  44. C. Li, D. Song, and D. Tao, “Multi-task recurrent neural networks and higher-order markov random fields for stock price movement prediction: Multi-task RNN and higer-order mrfs for stock price classification,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Min., 2019, pp. 1141–1151.
  45. V. Ng, R. F. Engle, and M. Rothschild, “A multi-dynamic-factor model for stock returns,” J. Econometrics, vol. 52, no. 1-2, pp. 245–266, 1992.
  46. C. Jutten and J. Herault, “Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture,” Sign. Process., vol. 24, no. 1, pp. 1–10, 1991.
  47. H. Wang, J. Peng, F. Huang, J. Wang, J. Chen, and Y. Xiao, “Micn: Multi-scale local and global context modeling for long-term series forecasting,” in Proc. Int. Conf. Learn. Represent., 2023.
  48. S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” ArXiv, vol. abs/1803.01271, 2018.
  49. Z. Yue, Y. Wang, J. Duan, T. Yang, C. Huang, Y. Tong, and B. Xu, “Ts2vec: Towards universal representation of time series,” in Proc. AAAI Conf. Artif. Intell., 2022, pp. 8980–8987.
  50. S. Chang, Y. Zhang, W. Han, M. Yu, X. Guo, W. Tan, X. Cui, M. J. Witbrock, M. A. Hasegawa-Johnson, and T. S. Huang, “Dilated recurrent neural networks,” in Proc. Adv. Neural Inform. Process. Syst., 2017, pp. 77–87.
  51. U. A. Müller, M. M. Dacorogna, R. D. Davé, O. V. Pictet, R. B. Olsen, and J. R. Ward, “Fractals and intrinsic time: A challenge to econometricians,” Unpublished manuscript, Olsen & Associates, Zürich, p. 130, 1993.
  52. K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” in Proc. Int. Conf. Learn. Represent., 2019.
  53. A. Wijesinghe and Q. Wang, “A new perspective on "how graph neural networks go beyond weisfeiler-lehman?",” in Proc. Int. Conf. Learn. Represent., 2022.
  54. F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly, B. Schölkopf, and O. Bachem, “Challenging common assumptions in the unsupervised learning of disentangled representations,” in Proc. Int. Conf. Mach. Learn., vol. 97, 2019, pp. 4114–4124.
  55. A. Hyvärinen and H. Morioka, “Unsupervised feature extraction by time-contrastive learning and nonlinear ICA,” in Proc. Adv. Neural Inform. Process. Syst., 2016, pp. 3765–3773.
  56. Y. Nie, N. H. Nguyen, P. Sinthong, and J. Kalagnanam, “A time series is worth 64 words: Long-term forecasting with transformers,” in Proc. Int. Conf. Learn. Represent., 2023.
  57. O. Anderson, “Time-series. 2nd edn.” 1976.
  58. X. Yang, W. Liu, D. Zhou, J. Bian, and T. Liu, “Qlib: An ai-oriented quantitative investment platform,” ArXiv, vol. abs/2009.11189, 2020.
  59. I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. M. Botvinick, S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual concepts with a constrained variational framework,” in Proc. Int. Conf. Learn. Represent., 2017.
  60. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.
  61. J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” ArXiv, vol. abs/1412.3555, 2014.
  62. A. A. Ariyo, A. O. Adewumi, and C. K. Ayo, “Stock price prediction using the ARIMA model,” in UKSim-AMSS International Conference on Computer Modelling and Simulation (UKSim), 2014, pp. 106–112.
  63. L. Zhang, C. C. Aggarwal, and G. Qi, “Stock price prediction via discovering multi-frequency trading patterns,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Min., 2017, pp. 2141–2149.
  64. P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention networks,” in Proc. Int. Conf. Learn. Represent., 2018.
  65. Q. Ding, S. Wu, H. Sun, J. Guo, and J. Guo, “Hierarchical multi-scale gaussian transformer for stock movement prediction,” in Proc. Int. Joint Conf. Artif. Intell., 2020, pp. 4640–4646.
  66. H. Lin, D. Zhou, W. Liu, and J. Bian, “Learning multiple stock trading patterns with temporal routing adaptor and optimal transport,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Min., 2021.
  67. C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and A. Lerchner, “Understanding disentangling in β𝛽\betaitalic_β-vae,” Arxiv, vol. abs/1804.03599, 2018.
  68. H. Kim and A. Mnih, “Disentangling by factorising,” in Proc. Int. Conf. Mach. Learn., vol. 80, 2018, pp. 2654–2663.
Citations (1)

Summary

We haven't generated a summary for this paper yet.