Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Steepness and Maximum Likelihood Estimation Properties of the Truncated Multivariate Normal Distributions (2303.10287v1)

Published 17 Mar 2023 in math.ST and stat.TH

Abstract: We consider the truncated multivariate normal distributions for which every component is one-sided truncated. We show that this family of distributions is an exponential family. We identify $\mathcal{D}$, the corresponding natural parameter space, and deduce that the family of distributions is not regular. We prove that the gradient of the cumulant-generating function of the family of distributions remains bounded near certain boundary points in $\mathcal{D}$, and therefore the family also is not steep. We also consider maximum likelihood estimation for $\boldsymbol{\mu}$, the location vector parameter, and $\boldsymbol{\Sigma}$, the positive definite (symmetric) matrix dispersion parameter, of a truncated non-singular multivariate normal distribution. We prove that each solution to the score equations for $(\boldsymbol{\mu},\boldsymbol{\Sigma})$ satisfies the method-of-moments equations, and we obtain a necessary condition for the existence of solutions to the score equations.

Summary

We haven't generated a summary for this paper yet.