Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Epigenetics Algorithms: Self-Reinforcement-Attention mechanism to regulate chromosomes expression (2303.10154v1)

Published 15 Mar 2023 in cs.NE, cs.LG, and math.OC

Abstract: Genetic algorithms are a well-known example of bio-inspired heuristic methods. They mimic natural selection by modeling several operators such as mutation, crossover, and selection. Recent discoveries about Epigenetics regulation processes that occur "on top of" or "in addition to" the genetic basis for inheritance involve changes that affect and improve gene expression. They raise the question of improving genetic algorithms (GAs) by modeling epigenetics operators. This paper proposes a new epigenetics algorithm that mimics the epigenetics phenomenon known as DNA methylation. The novelty of our epigenetics algorithms lies primarily in taking advantage of attention mechanisms and deep learning, which fits well with the genes enhancing/silencing concept. The paper develops theoretical arguments and presents empirical studies to exhibit the capability of the proposed epigenetics algorithms to solve more complex problems efficiently than has been possible with simple GAs; for example, facing two Non-convex (multi-peaks) optimization problems as presented in this paper, the proposed epigenetics algorithm provides good performances and shows an excellent ability to overcome the lack of local optimum and thus find the global optimum.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mohamed Djallel Dilmi (3 papers)
  2. Hanene Azzag (8 papers)
  3. Mustapha Lebbah (30 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.