Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Automated Hemorrhage Detection in Sparse-view Computed Tomography via Deep Convolutional Neural Network based Artifact Reduction (2303.09340v4)

Published 16 Mar 2023 in eess.IV, cs.CV, cs.LG, and physics.med-ph

Abstract: This is a preprint. The latest version has been published here: https://pubs.rsna.org/doi/10.1148/ryai.230275 Purpose: Sparse-view computed tomography (CT) is an effective way to reduce dose by lowering the total number of views acquired, albeit at the expense of image quality, which, in turn, can impact the ability to detect diseases. We explore deep learning-based artifact reduction in sparse-view cranial CT scans and its impact on automated hemorrhage detection. Methods: We trained a U-Net for artefact reduction on simulated sparse-view cranial CT scans from 3000 patients obtained from a public dataset and reconstructed with varying levels of sub-sampling. Additionally, we trained a convolutional neural network on fully sampled CT data from 17,545 patients for automated hemorrhage detection. We evaluated the classification performance using the area under the receiver operator characteristic curves (AUC-ROCs) with corresponding 95% confidence intervals (CIs) and the DeLong test, along with confusion matrices. The performance of the U-Net was compared to an analytical approach based on total variation (TV). Results: The U-Net performed superior compared to unprocessed and TV-processed images with respect to image quality and automated hemorrhage diagnosis. With U-Net post-processing, the number of views can be reduced from 4096 (AUC-ROC: 0.974; 95% CI: 0.972-0.976) views to 512 views (0.973; 0.971-0.975) with minimal decrease in hemorrhage detection (P<.001) and to 256 views (0.967; 0.964-0.969) with a slight performance decrease (P<.001). Conclusion: The results suggest that U-Net based artifact reduction substantially enhances automated hemorrhage detection in sparse-view cranial CTs. Our findings highlight that appropriate post-processing is crucial for optimal image quality and diagnostic accuracy while minimizing radiation dose.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com