Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Inexact Gradient Descent Method with Applications to Nonsmooth Convex Optimization (2303.08785v2)

Published 15 Mar 2023 in math.OC

Abstract: The paper proposes and develops a novel inexact gradient method (IGD) for minimizing C1-smooth functions with Lipschitzian gradients, i.e., for problems of C1,1 optimization. We show that the sequence of gradients generated by IGD converges to zero. The convergence of iterates to stationary points is guaranteed under the Kurdyka- Lojasiewicz (KL) property of the objective function with convergence rates depending on the KL exponent. The newly developed IGD is applied to designing two novel gradient-based methods of nonsmooth convex optimization such as the inexact proximal point methods (GIPPM) and the inexact augmented Lagrangian method (GIALM) for convex programs with linear equality constraints. These two methods inherit global convergence properties from IGD and are confirmed by numerical experiments to have practical advantages over some well-known algorithms of nonsmooth convex optimization.

Summary

We haven't generated a summary for this paper yet.