Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interlacing Polynomial Method for the Column Subset Selection Problem (2303.07984v2)

Published 14 Mar 2023 in cs.DS and math.FA

Abstract: This paper investigates the spectral norm version of the column subset selection problem. Given a matrix $\mathbf{A}\in\mathbb{R}{n\times d}$ and a positive integer $k\leq\text{rank}(\mathbf{A})$, the objective is to select exactly $k$ columns of $\mathbf{A}$ that minimize the spectral norm of the residual matrix after projecting $\mathbf{A}$ onto the space spanned by the selected columns. We use the method of interlacing polynomials introduced by Marcus-Spielman-Srivastava to derive a new upper bound on the minimal approximation error. This new bound is asymptotically sharp when the matrix $\mathbf{A}\in\mathbb{R}{n\times d}$ obeys a spectral power-law decay. The relevant expected characteristic polynomials can be written as an extension of the expected polynomial for the restricted invertibility problem, incorporating two extra variable substitution operators. Finally, we propose a deterministic polynomial-time algorithm that achieves this error bound up to a computational error.

Citations (1)

Summary

We haven't generated a summary for this paper yet.