Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reachability Analysis of Neural Networks with Uncertain Parameters (2303.07917v1)

Published 14 Mar 2023 in eess.SY, cs.LG, and cs.SY

Abstract: The literature on reachability analysis methods for neural networks currently only focuses on uncertainties on the network's inputs. In this paper, we introduce two new approaches for the reachability analysis of neural networks with additional uncertainties on their internal parameters (weight matrices and bias vectors of each layer), which may open the field of formal methods on neural networks to new topics, such as safe training or network repair. The first and main method that we propose relies on existing reachability analysis approach based on mixed monotonicity (initially introduced for dynamical systems). The second proposed approach extends the ESIP (Error-based Symbolic Interval Propagation) approach which was first implemented in the verification tool Neurify, and first mentioned in the publication of the tool VeriNet. Although the ESIP approach has been shown to often outperform the mixed-monotonicity reachability analysis in the classical case with uncertainties only on the network's inputs, we show in this paper through numerical simulations that the situation is greatly reversed (in terms of precision, computation time, memory usage, and broader applicability) when dealing with uncertainties on the weights and biases.

Summary

We haven't generated a summary for this paper yet.